SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mangles S. P. D.) "

Sökning: WFRF:(Mangles S. P. D.)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Walker, Anthony P, et al. (författare)
  • Horizon 2020 EuPRAXIA design study
  • 2017
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
  •  
2.
  • Turcu, I. C. E., et al. (författare)
  • HIGH FIELD PHYSICS AND QED EXPERIMENTS AT ELI-NP
  • 2016
  • Ingår i: Romanian Reports on Physics. - 1221-1451 .- 1841-8759. ; 68, s. S145-S231
  • Tidskriftsartikel (refereegranskat)abstract
    • ELI-NP facility will enable for the first time the use of two 10 PW laser beams for quantum electrodynamics (QED) experiments. The first beam will accelerate electrons to relativistic energies. The second beam will subject relativistic electrons to the strong electromagnetic field generating QED processes: intense gamma ray radiation and electron-positron pair formation. The laser beams will be focused to intensities above 10(21) Wcm(-2) and reaching 10(22)-10(23) Wcm(-2) for the first time. We propose to use this capability to investigate new physical phenomena at the interfaces of plasma, nuclear and particle physics at ELI-NP. This High Power Laser System Technical Design Report (HPLS-TDR2) presents the experimental area E6 at ELI-NP for investigating high field physics and quantum electrodynamics and the production of electron-positron-pairs and of energetic gamma-rays. The scientific community submitted 12 commissioning runs for E6 interaction chamber with two 10 PW laser beams and one proposal for the CETAL interaction chamber with 1 PW laser. The proposals are representative of the international high field physics community being written by 48 authors from 14 European and US organizations. The proposals are classified according to the science area investigated into: Radiation Reaction Physics: Classical and Quantum; Compton and Thomson Scattering Physics: Linear and Non Linear Regimes; QED in Vacuum; Atoms in Extreme Fields. Two pump-probe colliding 10 PW laser beams are proposed for the E6 interaction chamber. The focused pump laser beam accelerates the electrons to relativistic energies. The accelerated electron bunches interact with the very high electro-magnetic field of the focused probe laser beam. We propose two main types of experiments with: (a) gas targets in which the pump laser-beam is focused by a long focal length mirror and drives a wakefield in which the electron bunch is accelerated to multi-GeV energies and then exposed to the EM field of the probe laser which is tightly focused; (b) solid targets in which both the pump and probe laser beams are focused on the solid target, one accelerating the electrons in the solid and the other, delayed, providing the high electric field to which the relativistic electrons are subjected. We propose four main focusing configurations for the pump and probe laser beams, two for each type of target: counter-propagating 10 PW focused laser beams and the two 10 PW laser beams focused in the same direction. For solid targets we propose an additional configuration with plasma-mirror on the pump laser beam: the plasma mirror placed between the focusing mirror and target. It is proposed that the 10 PW laser beams will have polarization control and focus control by means of adaptive optics. Initially only one 10 PW may have polarization control and adaptive optics. In order to accommodate the two laser beams and diagnostics the proposed interaction chamber is quasi-octagonal with a diameter of 4.5 m. A large electron-spectrometer is proposed for multi-GeV electrons. Other diagnostics are requested for: gamma-rays, electrons and positrons, protons and ions, plasma characterization, transmitted and reflected laser beam. Targets will be provided by the ELI-NP Target Laboratory or purchased. The E6 experiments and diagnostics will benefit from the ELI-NP Electronics Laboratory, the Workshop and the Optics Laboratory. In order to ensure radiation-protection, a large beam-dump is planned for both multi-GeV electrons and multi-100 MeV protons.
  •  
3.
  • Maitrallain, A., et al. (författare)
  • Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator
  • 2022
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.
  •  
4.
  • Spesyvtsev, R., et al. (författare)
  • Generation of electron high energy beams with a ring-like structure by a dual stage laser wakefield accelerator
  • 2019
  • Ingår i: Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources III. - : SPIE. - 9781510627383 ; 11036
  • Konferensbidrag (refereegranskat)abstract
    • The laser wake-field accelerator (LWFA) traditionally produces high brightness, quasi-monoenergetic electron beams with Gaussian-like spatial and angular distributions. In the present work we investigate the generation of ultra-relativistic beams with ring-like structures in the blowout regime of the LWFA using a dual stage accelerator. A density down-ramp triggers injection after the first stage and is used to produce ring-like electron spectra in the 300 - 600 MeV energy range. These well defined, annular beams are observed simultaneously with the on-axis, high energy electron beams, with a divergence of a few milliradians. The rings have quasi-monoenergetic energy spectra with an RMS spread estimated to be less than 5%. Particle-in-cell simulations confirm that off-axis injection provides the electrons with the initial transverse momentum necessary to undertake distinct betatron oscillations within the plasma bubble during their acceleration process.
  •  
5.
  • Behm, K. T., et al. (författare)
  • A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV
  • 2018
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 89:11
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Author(s). We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.
  •  
6.
  • Cole, J. M., et al. (författare)
  • Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
  • 2018
  • Ingår i: Physical Review X. - 2160-3308. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (μ 500 MeV) with an intense laser pulse (a0 > 10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy > 30 MeV.
  •  
7.
  • Hussein, A. E., et al. (författare)
  • Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 μm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.
  •  
8.
  • Streeter, M. J.V., et al. (författare)
  • Characterization of laser wakefield acceleration efficiency with octave spanning near-IR spectrum measurements
  • 2022
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 25:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on experimental measurements of energy transfer efficiencies in a GeV-class laser wakefield accelerator. Both the transfer of energy from the laser to the plasma wakefield and from the plasma to the accelerated electron beam was diagnosed by simultaneous measurement of the deceleration of laser photons and the acceleration of electrons as a function of plasma length. The extraction efficiency, which we define as the ratio of the energy gained by the electron beam to the energy lost by the self-guided laser mode, was maximized at 19±3% by tuning the plasma density and length. The additional information provided by the octave-spanning laser spectrum measurement allows for independent optimization of the plasma efficiency terms, which is required for the key goal of improving the overall efficiency of laser wakefield accelerators.
  •  
9.
  • Ridgers, C. P., et al. (författare)
  • Signatures of quantum effects on radiation reaction in laser-electron-beam collisions
  • 2017
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press (CUP). - 0022-3778 .- 1469-7807. ; 83:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Two signatures of quantum effects on radiation reaction in the collision of a similar to GeV electron beam with a high intensity (>3 x 10(20) W cm(-2)) laser pulse have been considered. We show that the decrease in the average energy of the electron beam may be used to measure the Gaunt factor g for synchrotron emission. We derive an equation for the evolution of the variance in the energy of the electron beam in the quantum regime, i.e. quantum efficiency parameter eta (sic) 1. We show that the evolution of the variance may be used as a direct measure of the quantum stochasticity of the radiation reaction and determine the parameter regime where this is observable. For example, stochastic emission results in a 25 % increase in the standard deviation of the energy spectrum of a GeV electron beam, 1 fs after it collides with a laser pulse of intensity 10(21) W cm(-2). This effect should therefore be measurable using current high-intensity laser systems.
  •  
10.
  • Schwab, M. B., et al. (författare)
  • Visualization of relativistic laser pulses in underdense plasma
  • 2020
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present experimental evidence of relativistic electron-cyclotron resonances (RECRs) in the vicinity of the relativistically intense pump laser of a laser wakefield accelerator (LWFA). The effects of the RECRs are visualized by imaging the driven plasma wave with a few-cycle, optical probe in transverse geometry. The probe experiences strong, spectrally dependent and relativistically modified birefringence in the vicinity of the pump that arises due to the plasma electrons' relativistic motion in the pump's electromagnetic fields. The spectral birefringence is strongly dependent on the local magnetic field distribution of the pump laser. Analysis and comparison to both 2D and 3D particle-in-cell simulations confirm the origin of the RECR effect and its appearance in experimental and simulated shadowgrams of the laser-plasma interaction. The RECR effect is relevant for any relativistic, magnetized plasma and in the case of LWFA could provide a nondestructive, in situ diagnostic for tracking the evolution of the pump's intensity distribution with propagation through tenuous plasma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy