SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maniatis Tom) "

Sökning: WFRF:(Maniatis Tom)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matuozzo, Daniela, et al. (författare)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19.
  • 2023
  • Ingår i: Genome medicine. - 1756-994X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in~80% of cases.We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1×10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1×10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4×10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7×10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68×10-5).Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60years old.
  •  
2.
  • Stöven, Svenja, et al. (författare)
  • Caspase-mediated processing of the Drosophila NF-kappaB factor Relish.
  • 2003
  • Ingår i: Proc Natl Acad Sci U S A. - 0027-8424. ; 100:10, s. 5991-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The NF-kappaB-like transcription factor Relish plays a central role in the innate immune response of Drosophila. Unlike other NF-kappaB proteins, Relish is activated by endoproteolytic cleavage to generate a DNA-binding Rel homology domain and a stable IkappaB-like fragment. This signal-induced endoproteolysis requires the activity of several gene products, including the IkappaB kinase complex and the caspase Dredd. Here we used mutational analysis and protein microsequencing to demonstrate that a caspase target site, located in the linker region between the Rel and the IkappaB-like domain, is the site of signal-dependent cleavage. We also show physical interaction between Relish and Dredd, suggesting that Dredd indeed is the Relish endoprotease. In addition to the caspase target site, the C-terminal 107 aa of Relish are required for endoproteolysis and signal-dependent phosphorylation by the Drosophila IkappaB kinase beta. Finally, an N-terminal serine-rich region in Relish and the PEST domain were found to negatively regulate Relish activation.
  •  
3.
  • Stöven, Svenja, et al. (författare)
  • Caspase-mediated processing of the Drosophila NF-κB factor Relish
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 100:10, s. 5991-5996
  • Tidskriftsartikel (refereegranskat)abstract
    • The NF-κB-like transcription factor Relish plays a central role in the innate immune response of Drosophila. Unlike other NF-κB proteins, Relish is activated by endoproteolytic cleavage to generate a DNA-binding Rel homology domain and a stable IκB-like fragment. This signal-induced endoproteolysis requires the activity of several gene products, including the IκB kinase complex and the caspase Dredd. Here we used mutational analysis and protein microsequencing to demonstrate that a caspase target site, located in the linker region between the Rel and the IκB-like domain, is the site of signal-dependent cleavage. We also show physical interaction between Relish and Dredd, suggesting that Dredd indeed is the Relish endoprotease. In addition to the caspase target site, the C-terminal 107 aa of Relish are required for endoproteolysis and signal-dependent phosphorylation by the Drosophila IκB kinase β. Finally, an N-terminal serine-rich region in Relish and the PEST domain were found to negatively regulate Relish activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy