SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Manini T. M.) "

Sökning: WFRF:(Manini T. M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Manini, T. M., et al. (författare)
  • Identification of Sarcopenia Components That Discriminate Slow Walking Speed: A Pooled Data Analysis
  • 2020
  • Ingår i: Journal of the American Geriatrics Society. - : Wiley. - 0002-8614 .- 1532-5415. ; 68:7, s. 1419-1428
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND The Sarcopenia Definitions and Outcomes Consortium (SDOC) sought to identify cut points for muscle strength and body composition measures derived from dual-energy x-ray absorptiometry (DXA) that discriminate older adults with slow walking speed. This article presents the core analyses used to guide the SDOC position statements. DESIGN Cross-sectional data analyses of pooled data. SETTING University-based research assessment centers. PARTICIPANTS Community-dwelling men (n = 13,652) and women: (n = 5,115) with information on lean mass by DXA, grip strength (GR), and walking speed. MEASUREMENTS Thirty-five candidate sarcopenia variables were entered into sex-stratified classification and regression tree (CART) models to agnostically choose variables and cut points that discriminate slow walkers (<0.80 m/s). Models with alternative walking speed outcomes were also evaluated (<0.60 and <1.0 m/s and walking speed treated continuously). RESULTS CART models identified GR/body mass index (GRBMI) and GR/total body fat (GRTBF) as the primary discriminating variables for slowness in men and women, respectively. Men with GRBMI of 1.05 kg/kg/m(2)or less were approximately four times more likely to be slow walkers than those with GRBMI of greater than 1.05 kg/kg/m(2). Women with GRTBF of less than 0.65 kg/kg were twice as likely to be slow walkers than women with GRTBF of 0.65 kg/kg or greater. Models with alternative walking speed outcomes selected only functions of GR as primary discriminators of slowness in both men and women. DXA-derived lean mass measures did not consistently discriminate slow walkers. CONCLUSION GR with and without adjustments for body size and composition consistently discriminated older adults with slowness. CART models did not select DXA-based lean mass as a primary discriminator of slowness. These results were presented to an SDOC Consensus Panel, who used them and other information to develop the SDOC Position Statements.
  •  
2.
  • Cawthon, P. M., et al. (författare)
  • Putative Cut-Points in Sarcopenia Components and Incident Adverse Health Outcomes: AnSDOCAnalysis
  • 2020
  • Ingår i: Journal of the American Geriatrics Society. - : Wiley. - 0002-8614 .- 1532-5415. ; 68:7, s. 1429-1437
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES Analyses performed by the Sarcopenia Definitions and Outcomes Consortium (SDOC) identified cut-points in several metrics of grip strength for consideration in a definition of sarcopenia. We describe the associations between the SDOC-identified metrics of low grip strength (absolute or standardized to body size/composition); low dual-energy x-ray absorptiometry (DXA) lean mass as previously defined in the literature (appendicular lean mass [ALM]/ht(2)); and slowness (walking speed <.8 m/s) with subsequent adverse outcomes (falls, hip fractures, mobility limitation, and mortality). DESIGN Individual-level, sex-stratified pooled analysis. We calculated odds ratios (ORs) or hazard ratios (HRs) for incident falls, mobility limitation, hip fractures, and mortality. Follow-up time ranged from 1 year for falls to 8.8 +/- 2.3 years for mortality. SETTING Eight prospective observational cohort studies. PARTICIPANTS A total of 13,421 community-dwelling men and 4,828 community-dwelling women. MEASUREMENTS Grip strength by hand dynamometry, gait speed, and lean mass by DXA. RESULTS Low grip strength (absolute or standardized to body size/composition) was associated with incident outcomes, usually independently of slowness, in both men and women. ORs and HRs generally ranged from 1.2 to 3.0 for those below vs above the cut-point. DXA lean mass was not consistently associated with these outcomes. When considered together, those who had both muscle weakness by absolute grip strength (<35.5 kg in men and <20 kg in women) and slowness were consistently more likely to have a fall, hip fracture, mobility limitation, or die than those without either slowness or muscle weakness. CONCLUSION Older men and women with both muscle weakness and slowness have a higher likelihood of adverse health outcomes. These results support the inclusion of grip strength and walking speed as components in a summary definition of sarcopenia.
  •  
3.
  • Barregård, Lars, 1948, et al. (författare)
  • Human and Methodological Sources of Variability in the Measurement of Urinary 8-Oxo-7,8-dihydro-2 '-deoxyguanosine
  • 2013
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 18:18, s. 2377-2391
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is a widely used biomarker of oxidative stress. However, variability between chromatographic and ELISA methods hampers interpretation of data, and this variability may increase should urine composition differ between individuals, leading to assay interference. Furthermore, optimal urine sampling conditions are not well defined. We performed inter-laboratory comparisons of 8-oxodG measurement between mass spectrometric-, electrochemical- and ELISA-based methods, using common within-technique calibrants to analyze 8-oxodG-spiked phosphate-buffered saline and urine samples. We also investigated human subject- and sample collection-related variables, as potential sources of variability. Results: Chromatographic assays showed high agreement across urines from different subjects, whereas ELISAs showed far more inter-laboratory variation and generally overestimated levels, compared to the chromatographic assays. Excretion rates in timed 'spot' samples showed strong correlations with 24 h excretion (the 'gold' standard) of urinary 8-oxodG (r(p) 0.67-0.90), although the associations were weaker for 8-oxodG adjusted for creatinine or specific gravity (SG). The within-individual excretion of 8-oxodG varied only moderately between days (CV 17% for 24 h excretion and 20% for first void, creatinine-corrected samples). Innovation: This is the first comprehensive study of both human and methodological factors influencing 8-oxodG measurement, providing key information for future studies with this important biomarker. Conclusion: ELISA variability is greater than chromatographic assay variability, and cannot determine absolute levels of 8-oxodG. Use of standardized calibrants greatly improves intra-technique agreement and, for the chromatographic assays, importantly allows integration of results for pooled analyses. If 24 h samples are not feasible, creatinine- or SG-adjusted first morning samples are recommended.
  •  
4.
  •  
5.
  • Picca, Anna, et al. (författare)
  • Altered Expression of Mitoferrin and Frataxin, Larger Labile Iron Pool and Greater Mitochondrial DNA Damage in the Skeletal Muscle of Older Adults
  • 2020
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial dysfunction and iron (Fe) dyshomeostasis are invoked among the mechanisms contributing to muscle aging, possibly via a detrimental mitochondrial-iron feed-forward loop. We quantified the labile Fe pool, Fe isotopes, and the expression of mitochondrial Fe handling proteins in muscle biopsies obtained from young and older adults. The expression of key proteins of mitochondrial quality control (MQC) and the abundance of the mitochondrial DNA common deletion (mtDNA(4977)) were also assessed. An inverse association was found between total Fe and the heavier Fe isotope (Fe-56), indicating an increase in labile Fe abundance in cells with greater Fe content. The highest levels of labile Fe were detected in old participants with a Short Physical Performance Battery (SPPB) score <= 7 (low-functioning, LF). Protein levels of mitoferrin and frataxin were, respectively, higher and lower in the LF group relative to young participants and older adults with SPPB scores >= 11 (high-functioning, HF). The mtDNA(4977) relative abundance was greater in old than in young participants, regardless of SPPB category. Higher protein levels of Pink1 were detected in LF participants compared with young and HF groups. Finally, the ratio between lipidated and non-lipidated microtubule-associated protein 1A/1B-light chain 3 (i.e., LC3B II/I), as well as p62 protein expression was lower in old participants regardless of SPPB scores. Our findings indicate that cellular and mitochondrial Fe homeostasis is perturbed in the aged muscle (especially in LF older adults), as reflected by altered levels of mitoferrin and frataxin, which, together with MQC derangements, might contribute to loss of mtDNA stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy