SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mansfeld J.) "

Sökning: WFRF:(Mansfeld J.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, U.B., et al. (författare)
  • Characterization of the Paleoproterozoic Mantle beneath the Fennoscandian Shield : Geochemistry and Isotope Geology (Nd, Sr) of ~ 1.8 Ga Mafic Plutonic Rocks from the Transscandinavian Igneous Belt in Southeast Sweden
  • 2007
  • Ingår i: International Geology Review. - : Informa UK Limited. - 0020-6814 .- 1938-2839. ; 49:7, s. 587-625
  • Forskningsöversikt (refereegranskat)abstract
    • Geochemistry and Sr-Nd isotope geochemistry of ca. 1.8 Ga, mafic intrusions of the Transscandinavian Igneous Belt (TIB-1) in the Fennoscandian shield were studied in southeastern Sweden. These rocks show LILE-LREE-enriched, HFSE-depleted, calc-alkaline, continental arc signatures in the north, grading to slightly less enriched, oceanic affinities southward.εNd(1.80) values range from +2.0 to +0.7 and 87Sr/86Sr(1.80) from 0.7022 to 0.7029 (with one outlier at 0 and 0.7033), without correlation to fractionation (e.g., Mg#) or crustal contamination, indicating sources that are mildly depleted. The most depleted ratios occur in the south, trending with the geochemistry toward more enriched compositions northward. The sources represent depleted mantle wedge material that was subjected to enrichment not long before (TDM ca. 2.0 Ga), i.e., during the preceding arc subduction (2.1-1.82 Ga), and/or during the TIB-1 magmatism itself, by hydrous fluids with a sediment and/or melt input increasing northward. The TIB-1 magmatism occurred above a south(west)ward-retreating subduction zone along the continental margin of the juvenile Svecofennian continent at 1.81-1.76 Ga.
  •  
2.
  • Bingen, B., et al. (författare)
  • Relations between 1.19-1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S. Norway
  • 2003
  • Ingår i: Precambrian Research. - : Elsevier. - 0301-9268 .- 1872-7433. ; 124:2-4, s. 215-241
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sveconorwegian and Grenville orogenic belts display widespread 1.19–1.13 Ga Early Grenvillian continental magmatism including A-type granitoids. In the Sveconorwegian province, S Norway, bimodal 1.17–1.14 Ga metavolcanic rocks of the Telemark sector are part of this magmatism. Volcanic rocks in low- to medium-metamorphic grade are interlayered with immature and locally conglomeratic clastic metasediments and covered by a thick metasedimentary sequence. Minor unconformities are reported. New zircon U–Pb data are presented and integrated in a revised stratigraphy of the Telemark supracrustal rocks. A metarhyodacite at the base of the Nore group yields a crystallisation age of 1169±9 Ma and displays 1.7–1.5 Ga inherited zircon grains (SIMS data). A metarhyolite situated below sandstone of the Heddal group yields a crystallisation age of 1159±8 Ma. In the cover sequence, a metasandstone of the Heddal group has detrital zircon grains in the intervals 2.86–2.41 and 1.94–1.11 Ga (34 analysed grains) and a metasandstone of the Kalhovd formation in the intervals 2.85–2.74 and 2.00–1.05 Ga (41 analysed grains). These metasediments were deposited after 1121±15 Ma and 1065±11 Ma, respectively and were transformed by 1.01 Ga Late Sveconorwegian deformation and metamorphism. The metasedimentary rocks contain a significant amount of regionally derived clasts. Two deformed A-type granite metaplutons yield zircon U–Pb intrusion ages of 1146±5 Ma (Eiddal) and 1153±2 Ma (Haglebu, ID–TIMS data). The 1.19–1.13 Ga magmatism is distributed in the western part of the Sveconorwegian province, in the Telemark, Bamble and Rogaland–Vest Agder sectors, indicating that these sectors were part of a single plate at that time, which is characterised by a thin lithosphere today. The A-type geochemical signature of the felsic magmatism and the continental lithosphere signature of the associated mafic volcanism point to a continental non-compressional tectonic regime. The overlap in time between widespread 1.19–1.13 Ga continental magmatism, intermontane basin formation and Early Sveconorwegian 1.15–1.12 Ga granulite-facies metamorphism recorded in the Bamble sector suggest a thermal pulse linked to upflow of asthenospheric mantle. Deposition of the cover of clastic sediments between 1.12 and 1.01 Ga possibly reflects thermal subsidence after the 1.19–1.13 Ga event and before the Late Sveconorwegian (1.03–0.95 Ga) orogenic phases. An analogy between the 1.19–1.13 Ga evolution of the Sveconorwegian province and the Cenozoic formation of the Basin and Range province in USA is discussed.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Melero-Asensio, I., et al. (författare)
  • Geophysical signature of Malingen, the minor crater of the Lockne-Malingen doublet impact structure
  • 2018
  • Ingår i: Meteoritics & Planetary Science. - : Wiley. - 1086-9379 .- 1945-5100. ; 53:7, s. 1456-1475
  • Tidskriftsartikel (refereegranskat)abstract
    • Malingen is the 0.7km wide minor crater associated to the 10 times larger Lockne crater in the unique Lockne-Malingen doublet. The craters formed at 458Ma by the impact of a binary asteroid related to the well-known 470Ma Main Belt breakup event responsible for a large number of Ordovician craters and fossil meteorites. The binary asteroid struck a target sequence including similar to 500m of sea water, similar to 80m of limestone, similar to 30m of dark mud, and a peneplainized Precambrian crystalline basement. Although the Lockne crater has been extensively studied by core drillings and geophysics, little is known about the subsurface morphology of Malingen. We performed magnetic susceptibility and remanence, as well as density, measurements combined with gravity, and magnetic field surveys over the crater and its close vicinity as a base for forward magnetic and gravity modeling. The interior of the crater shows a general magnetic low of 90-100nT broken by a clustered set of high-amplitude, short wavelength anomalies caused by bodies of mafic rock in the target below the crater and as allogenic blocks in the crater infill. The gravity shows a general -1.4mgal anomaly over the crater caused by low-density breccia infill and fractured crystalline rocks below the crater floor. The modeling also revealed a slightly asymmetrical shape of the crater that together with the irregular ejecta distribution supports an oblique impact from the east, which is consistent with the direction of impact suggested for the Lockne crater.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy