SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mao Jingqiu) "

Search: WFRF:(Mao Jingqiu)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barkley, Michael P., et al. (author)
  • Can a "state of the art" chemistry transport model simulate Amazonian tropospheric chemistry?
  • 2011
  • In: Journal of Geophysical Research. - 2156-2202. ; 116, s. 16302-16302
  • Journal article (peer-reviewed)abstract
    • We present an evaluation of a nested high-resolution Goddard Earth Observing System (GEOS)-Chem chemistry transport model simulation of tropospheric chemistry over tropical South America. The model has been constrained with two isoprene emission inventories: (1) the canopy-scale Model of Emissions of Gases and Aerosols from Nature (MEGAN) and (2) a leaf-scale algorithm coupled to the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model, and the model has been run using two different chemical mechanisms that contain alternative treatments of isoprene photo-oxidation. Large differences of up to 100 Tg C yr (1) exist between the isoprene emissions predicted by each inventory, with MEGAN emissions generally higher. Based on our simulations we estimate that tropical South America (30-85 degrees W, 14 degrees N-25 degrees S) contributes about 15-35% of total global isoprene emissions. We have quantified the model sensitivity to changes in isoprene emissions, chemistry, boundary layer mixing, and soil NOx emissions using ground-based and airborne observations. We find GEOS-Chem has difficulty reproducing several observed chemical species; typically hydroxyl concentrations are underestimated, whilst mixing ratios of isoprene and its oxidation products are overestimated. The magnitude of model formaldehyde (HCHO) columns are most sensitive to the choice of chemical mechanism and isoprene emission inventory. We find GEOS-Chem exhibits a significant positive bias (10-100%) when compared with HCHO columns from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI) for the study year 2006. Simulations that use the more detailed chemical mechanism and/or lowest isoprene emissions provide the best agreement to the satellite data, since they result in lower-HCHO columns.
  •  
2.
  • Barkley, Michael P., et al. (author)
  • Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns
  • 2013
  • In: Journal of Geophysical Research: Atmospheres. - : American Geophysical Union (AGU). - 2169-8996 .- 2169-897X. ; 118:12, s. 6849-6868
  • Journal article (peer-reviewed)abstract
    • We use formaldehyde (HCHO) vertical column measurements from the Scanning Imaging Absorption spectrometer for Atmospheric Chartography (SCIAMACHY) and Ozone Monitoring Instrument (OMI), and a nested-grid version of the GEOS-Chem chemistry transport model, to infer an ensemble of top-down isoprene emission estimates from tropical South America during 2006, using different model configurations and assumptions in the HCHO air-mass factor (AMF) calculation. Scenes affected by biomass burning are removed on a daily basis using fire count observations, and we use the local model sensitivity to identify locations where the impact of spatial smearing is small, though this comprises spatial coverage over the region. We find that the use of the HCHO column data more tightly constrains the ensemble isoprene emission range from 27-61TgC to 31-38TgC for SCIAMACHY, and 45-104TgC to 28-38TgC for OMI. Median uncertainties of the top-down emissions are about 60-260% for SCIAMACHY, and 10-90% for OMI. We find that the inferred emissions are most sensitive to uncertainties in cloud fraction and cloud top pressure (differences of +/- 10%), the a priori isoprene emissions (+/- 20%), and the HCHO vertical column retrieval (+/- 30%). Construction of continuous top-down emission maps generally improves GEOS-Chem's simulation of HCHO columns over the region, with respect to both the SCIAMACHY and OMI data. However, if local time top-down emissions are scaled to monthly mean values, the annual emission inferred from SCIAMACHY are nearly twice those from OMI. This difference cannot be explained by the different sampling of the sensors or uncertainties in the AMF calculation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view