SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mao Yimin) "

Sökning: WFRF:(Mao Yimin)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Geng, Lihong, et al. (författare)
  • Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength
  • 2017
  • Ingår i: Cellulose. - : Springer Netherlands. - 0969-0239 .- 1572-882X. ; 24:12, s. 5417-5429
  • Tidskriftsartikel (refereegranskat)abstract
    • Carboxylated cellulose nanofibers (CNFs), having an average width of 7 nm and thickness of 1.5 nm, were produced by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation method. The fiber cross-sectional dimensions were determined using small-angle X-ray scattering (SAXS), transmission electron microscopy and atomic force microscopy techniques, where the rheological properties under different concentration and ionic strength were also investigated. The formation of hydrogel was evidenced by increasing the CNF concentration or ionic strength of the solvent (water), while the gel structure in ion-induced CNF hydrogels was found to be relatively inhomogeneous. The gelation behavior was closely related to the segmental aggregation of charged CNF, which could be quantitatively characterized by the correlation length (Ο) from the low-angle scattering profile and the scattering invariant (Q) in SAXS.
  •  
2.
  • Lin, Baojun, et al. (författare)
  • Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses
  • 2020
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 13:8, s. 2467-2479
  • Tidskriftsartikel (refereegranskat)abstract
    • Slot-die coating being compatible with the roll-to-roll technique has been regarded as a promising tool for upscaling the manufacturing of organic solar cells (OSCs). However, there has been a significant gap between the efficiencies of the state-of-the-art spin-coated devices and the scalable processed devices. The active layer morphology is crucial to achieve high efficiency in OSCs, which depends on the conditions of film fabrication. To figure out and optimize the slot-die coating process, a deeper understanding of the film formation kinetics is important. Herein, in situ measurements of the slot-die coating process based on the PM7:IT4F system are demonstrated to illustrate the aggregation and crystallization evolution at various die temperatures and substrate temperatures. OSCs with a high power conversion efficiency of 13.2% are achieved at 60 degrees C die temperature/60 degrees C substrate temperature due to the improved exciton dissociation, charge transport and suppressed non-radiative charge recombination. The optimized morphology is attributed to the balanced polymer pre-aggregation and small molecule crystallization kinetics. The unsuitable die temperature leads to overlarge phase separation and consequently inefficient exciton dissociation while the improper substrate temperature results in weak crystallization and the following shrunken carrier lifetime with strong non-radiative combination. This work provides fundamental understanding on the correlations among processing methodology, solution pre-aggregation, morphology formation kinetics, device physics and device performance and affords guidance for device optimization in scalable manufacturing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy