SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Margheritelli Silvia) "

Sökning: WFRF:(Margheritelli Silvia)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barrefelt, Åsa, et al. (författare)
  • DYNAMIC MR IMAGING, BIODISTRIBUTION AND PHARMACOKINETICS OF POLYMER SHELLED MICROBUBBLES CONTAINING SPION
  • 2014
  • Ingår i: NANO. - 1793-2920. ; 9:6, s. 1450069-
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic Resonance Imaging (MRI) is a noninvasive diagnostic method that provides information on morphological and physiological changes of the internal organs over time. Imaging and measurements can be repeated on the same subject, thereby reducing inter-individual variability effects and hence the number of subjects required. A potential MRI contrast agent consisting of microbubbles embedded with superparamagnetic iron oxide nanoparticles (SPION) in the shell (SPION MBs) was injected intravenously into rats to determine their biodistribution and pharmacokinetics using MR imaging. Agarose phantoms containing SPION MBs were scanned using 3 T MRI to construct a standard curve. Rats were injected with SPION MBs, free SPION or plain MBs and scanned dynamically at 3 T using a clinical MR scanner. The relaxation rate (R2*) was studied over time as a measure of the iron oxide concentrations to enable calculation of the pharmacokinetic parameters. The kinetics of SPION MBs in the liver was fitted to a one-compartment model. Furthermore, the biological fate of SPION MBs was examined via a histological survey of tissue samples using Perls' Prussian blue staining and immunohistochemistry (IHC). 1.2 h after injection of SPION MBs, T2* of the liver had decreased to its minimum. The elimination half-life of SPION MBs was 598.2 +/- 97.3 h, while the half-life for SPION was 222.6 +/- 26.4 h. Moreover, our study showed that SPION MBs were taken up by the macrophages in the lungs, spleen and liver. MBs labeled with SPION can be used for MR imaging. Moreover, MRI is a reliable and noninvasive tool that can be utilized in pharmacokinetic investigations of future contrast agents using SPION MBs and SPION in the rat.
  •  
2.
  • Brismar, Torkel B., et al. (författare)
  • Magnetite Nanoparticles Can Be Coupled to Microbubbles to Support Multimodal Imaging
  • 2012
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 13:5, s. 1390-1399
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbubbles (MBs) are commonly used as injectable ultrasound contrast agent (UCA) in modern ultrasonography. Polymer-shelled UCAs present additional potentialities with respect to marketed lipid-shelled UCAs. They are more robust; that is, they have longer shelf and circulation life, and surface modifications are quite easily accomplished to obtain enhanced targeting and local drug delivery. The next generation of UCAs will be required to support not only ultrasound-based imaging methods but also other complementary diagnostic approaches such as magnetic resonance imaging or computer tomography. This work addresses the features of MBs that could function as contrast agents for both ultrasound and magnetic resonance imaging. The results indicate that the introduction of iron oxide nanoparticles (SPIONs) in the poly(vinyl alcohol) shell or on the external surface of the MBs does not greatly decrease the echogenicity of the host MBs compared with the unmodified one. The presence of SPIONs provides enough magnetic susceptibility to the MBs to accomplish good detectability both in vitro and in vivo. The distribution of SPIONs on the shell and their aggregation state seem to be key factors for the optimization of the transverse relaxation rate.
  •  
3.
  • Larsson, Malin, et al. (författare)
  • Visualization of multimodal polymer-shelled contrast agents using ultrasound contrast sequences : an experimental study in a tissue mimicking flow phantom
  • 2013
  • Ingår i: Cardiovascular Ultrasound. - : Springer Science and Business Media LLC. - 1476-7120. ; 11, s. 33-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A multimodal polymer-shelled contrast agent (CA) with target specific potential was recently developed and tested for its acoustic properties in a single element transducer setup. Since the developed polymeric CA has different chemical composition than the commercially available CAs, there is an interest to study its acoustic response when using clinical ultrasound systems. The aim of this study was therefore to investigate the acoustic response by studying the visualization capability and shadowing effect of three polymer-shelled CAs when using optimized sequences for contrast imaging. Methods: The acoustic response of three types of the multimodal CA was evaluated in a tissue mimicking flow phantom setup by measuring contrast to tissue ratio (CTR) and acoustic shadowing using five image sequences optimized for contrast imaging. The measurements were performed over a mechanical index (MI) range of 0.2-1.2 at three CA concentrations (10(6), 10(5), 10(4) microbubbles/ml). Results: The CTR-values were found to vary with the applied contrast sequence, MI and CA. The highest CTR-values were obtained when a contrast sequence optimized for higher MI imaging was used. At a CA concentration of 106 microbubbles/ml, acoustic shadowing was observed for all contrast sequences and CAs. Conclusions: The CAs showed the potential to enhance ultrasound images generated by available contrast sequences. A CA concentration of 106 MBs/ml implies a non-linear relation between MB concentration and image intensity.
  •  
4.
  • Poehlmann, Melanie, et al. (författare)
  • On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles
  • 2014
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-683X .- 1744-6848. ; 10:1, s. 214-226
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs). As a result, two different designs of a hybrid contrast agent are obtained. With the physical approach, SPIONs are embedded inside the polymeric shell and with the chemical approach SPIONs are covalently linked to the shell surface. The structural design of hybrid probes is important, because it strongly determines the contrast agent's response in the considered imaging methods. In particular, we were interested how structural differences affect the shell's mechanical properties, which play a key role for the MBs' US imaging performance. Therefore, we thoroughly characterized the MBs' geometric features and investigated low-frequency mechanics by using atomic force microscopy (AFM) and high-frequency mechanics by using acoustic tests. Thus, we were able to quantify the impact of the used SPIONs integration method on the shell's elastic modulus, shear modulus and shear viscosity. In summary, the suggested approach contributes to an improved understanding of structure-property relations in US-active hybrid contrast agents and thus provides the basis for their sustainable development and optimization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy