SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marklund Stellan Professor) "

Sökning: WFRF:(Marklund Stellan Professor)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jansson, Stina, 1975- (författare)
  • Thermal formation and chlorination of dioxins and dioxin-like compounds
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis contributes to an increased understanding of the formation of dioxins and dioxin-like compounds in combustion processes. Although emissions to air from waste incineration facilities have been greatly reduced by the use of efficient air pollution control measures, the resulting residues (ashes and filters) are highly toxic and are classified as hazardous waste. The main objective of the work underlying this thesis was to elucidate the formation and chlorination pathways of dioxins and dioxin-like compounds in waste combustion flue gases in the temperature range 640-200°C in a representative, well-controlled laboratory-scale reactor using artificial municipal solid waste. This could contribute to the reduction of harmful emissions to air and also reduce the toxicity of waste incineration residues, thus reducing or even eliminating the need for costly and potentially hazardous after-treatment. A comparison of four different quenching profiles showed that the formation of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) was rapid and mainly occurred in the 640-400°C temperature region, with high dependency on sufficient residence time within a specific temperature region. Prolonged residence time at high temperatures (450/460°C) reduced the PCDD yields, even at lower temperatures along the post-combustion zone. PCDD, PCDF and PCN (polychlorinated naphthalene) isomer distribution patterns indicated contributions from chlorophenol condensation as well as chlorination reactions for all three classes of compounds. The formation of PCDDs was largely influenced by chlorophenol condensation and to some extent by chlorination reactions. For the PCDFs, chlorine substitution adjacent to the oxygen bridges was unfavoured, as demonstrated by the notably lower abundance of 1,9-substituted congeners. This was supported by bidirectional orthogonal partial least squares (O2PLS) modelling. The variable with the greatest influence on the distribution of PCDD congeners was the relative free energy (RΔGf). The O2PLS models displayed distinct clusters, dividing most of the homologues into two or three sub-groups of congeners which seemed to correspond to the probability of origination from chlorophenol condensation. The effects of injection of aromatic structures into the flue gas differed for each class of compounds. Injection of naphthalene increased the formation of monochlorinated naphthalene but the remaining homologues appeared to be unaffected. This was probably due to insufficient residence time at temperatures necessary for further chlorination. Injected dibenzo-p-dioxin was decomposed, chlorinated and re-condensated into PCDDs and PCDFs, whereas injection of dibenzofuran and fluorene reduced the PCDD levels in the flue gas.
  •  
2.
  • Lundin, Lisa, 1976- (författare)
  • Formation and degradation of PCDD/F in waste incineration ashes
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The disposal of combustible wastes by incineration is a controversial issue that is strongly debated by both scientists and environmental activists due to the resulting emissions of noxious compounds, including (inter alia) polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), heavy metals and acid gases like sulfur dioxide. Currently available air pollution control devices are capable of effectively cleaning flue gases, and PCDD/F emissions to air from modern municipal solid waste (MSW) incinerators are low. However, the PCDD and PCDF end up in ash fractions that, in Sweden, are usually deposited in landfills. The European Union has recently set a maximum permitted total concentration of 15 µg TEQ/kg for PCDD/F species in waste. Fly ash from municipal solid waste (MSW) incineration containing PCDD/Fs at concentrations above this limit will have to be remediated to avoid disposing of them in landfills; an expensive and environmentally unfriendly option. Therefore, effective, reliable and cost-effective methods for degrading PCDD/F in fly ash are required, and a better understanding of the behavior of PCDDs and PCDFs during thermal treatment will be needed to develop them. In the studies this thesis is based upon both the formation and degradation of PCDDs and PCDFs in ashes from MSW incineration were studied. The main findings of the investigations regarding PCCD/F formation were: - The concentrations of PCDD and PCDF in fly ash increased with reductions in the temperature in the post-combustion zone. - The homologue profile in the ash changed when the temperature in the post-combustion zone changed. - The final amounts of PCDD and PCDF present were affected by their rates of both formation and degradation, and the mechanisms involved differ between PCDDs and PCDFs. The main findings from the degradation studies were: - The chemical composition of ash has a major impact on the degradation potential of PCDD and PCDF. - The presence of oxygen during thermal treatment can enhance the degradation of PCDD and PCDF. - Thermal treatment is a viable option for degrading PCDD and PCDF in ashes from MSW. - Shifts in chlorination degree occur during thermal treatment. - Rapid heat transfer into the ash is a key factor for ensuring fast degradation of PCDD and PCDF. - Degradation of other chlorinated organic compounds, e.g. PCB and HCB, also occurs during thermal treatment of ash. - Reductions in levels of PCDD and PCDF were not solely due to their desorption to the gas phase. - Differences between the behavior of 2378-substituted congeners of PCDD and PCDF and the other congeners during thermal treatment were observed. - Differences in isomer patterns of both PCDD and PCDF were observed between the ash and gas phases after thermal treatment at both 300 and 500 oC. Overall, the results show that the formation and degradation mechanisms of PCDDs differ substantially from those of PCDFs. Thus these groups of compounds should be separately considered in attempts to identify ways to reduce their concentrations.
  •  
3.
  • Söderström, Gunilla, 1964- (författare)
  • On the combustion and photolytic degradation products of some brominated flame retardants
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Many modern products, especially electronic goods, are protected by brominated flame retardants (BFR). Some of the most common flame retardants are polybrominated diphenylethers (PBDE), tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecane (HBCD). These compounds have been found in environmental samples and shown to have physiological effects on experimental animals. This thesis considers end-of-life aspects of brominated flame retardants. When spread in the environment, these compounds may be degraded into other forms. For example, if sludge contaminated with PBDE is used as an agricultural fertilizer, the PBDE could be degraded by sunlight to species of PBDE with lower degree of bromination and, to some extent, also form polybrominated dibenzofurans (PBDF). In addition, PBDF and polybrominated dibenzo-p-dioxins (PBDD) are formed during combustion of brominated flame retardants. When waste products with brominated flame retardants are co-combusted with household waste or other chlorinated fuel, polybrominated- chlorinated dibenzo-p-dioxins (PBCDD) and polybrominated- chlorinated dibenzofurans (PBCDF)will be formed. The bromin/chlorine composition of dioxins and furans is dependent on the bromine/chlorine ratio in the fuel, but the types of brominated flame retardants that are being combusted is less important. In the studies reported here, bromine levels higher than "normal" for household waste has been used. The results show that there is a pronounced increase in total dioxin levels in fluegas when when bromine is present, implying that waste containing brominated flame retardants should only be incinerated at combustion plants with effecient air pollution control devices.
  •  
4.
  • Weidemann, Eva, 1982- (författare)
  • Waste incineration residues : Persistent organic pollutants in flue gas and fly ash from waste incineration
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Modern societies produce large quantities of municipal solid waste (MSW), which is commonly disposed of by incineration. This has several advantages: it reduces the waste’s volume and sterilizes it while also enabling energy recovery. However, MSW incineration has some notable disadvantages, the most widely debated of which is probably the production and release of persistent organic pollutants (POP) such as polychlorinated dibenzofurans (PCDF), dibenzo-p-dioxins (PCDD), biphenyls (PCB) and naphthalenes (PCN). Of the 210 PCDF and PCDD congeners, 17 are toxic, with hormone-disrupting and carcinogenic properties. Twelve of the 209 PCB congeners and at least 2 of the 75 PCN also exhibit such properties. These POP form in the post-combustion zones of MSW incineration plants and are removed from the flue gas using filtering devices that trap them in the fly ashThis thesis concerns the formation and degradation of POP in processes related to MSW incineration. The first paper describes a case study in which PCDD were forming in filters designed to remove them from flue gases, causing emission-related issues in a full-scale MSW incineration plant. It was shown that the PCDD formation was probably due to chlorophenol condensation on the filters’ surfaces.The second paper describes the validation of a cooling probe designed to prevent POP formation during high temperature (>450 °C) flue gas sampling. The results obtained also confirmed that PCDF and PCDD formation takes place at temperatures below 600 °C.In the third paper, three different fly ashes were subjected to thermal treatment under an inert atmosphere in a rotary kiln and in sealed ampoules at 400 °C. The concentrations, degrees of chlorination and congener profiles of the POP in the treated ashes and emitted gases were compared to those for the untreated ashes. The trends observed for PCDF mirrored those for PCN, while the trends for PCDD closely resembled those for PCB. The PCDF congener profiles of the kiln ash were similar regardless of the initial ash composition, suggesting that the mechanisms of PCDF formation were similar in all cases.The fourth paper describes the surface characterization of the three fly ashes studied in paper three by SEM, EDX, XPS and XRD. In addition, the thermal desorption and subsequent degradation of POP from the ashes was studied at temperatures of 300-900 °C. The composition of the gases released as the temperature increased differed between the ashes and depended on their composition. Doping experiments using isotopically labelled PCDF and PCDD suggests that PCDD desorbed at lower temperatures than PCDF.This thesis examines several problems relating to POP formation during MSW incineration, from sampling to the ultimate fate of incineration residues. The results obtained illustrate the wide range of processes that contribute to thermal POP formation and degradation during and after MSW incineration.
  •  
5.
  • Aurell, Johanna, 1972- (författare)
  • Effects of Varying Combustion Conditions on PCDD/F Formation
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are by-products emitted from combustion sources such as municipal solid waste (MSW) incineration plants. These organic compounds are recognized as toxic, bioaccumulative and persistent in the environment. PCDD/Fs are removed from flue gases before released from MSW incineration. However, the PCDD/Fs are not destroyed but retained in the residues, thus in the environment. Understanding the pathways that lead to their formation is important in order to develop ways to suppress their formation and prevent their release into the environment. Suppressing the formation can also allow less expensive air pollution control system to be used, and/or the costs of thermally treating the residues to be reduced. The main objective of the studies underlying this thesis was to elucidate process, combustion and fuel parameters that substantially affect the emission levels and formation of PCDD/Fs in flue gases from MSW incineration. The experiments were conducted under controllable, realistic combustion conditions using a laboratory-scale reactor combusting artificial MSW. The parameter found to most strongly reduce the PCDD/F emissions, was prolonging the flue gas residence time at a relatively high temperature (460°C). Increasing the sulfur dioxide (SO2) to hydrogen chloride (HCl) ratio to 1.6 in the flue gas was also found to reduce the PCDF levels, but not the PCDD levels. Fluctuations in the combustion process (carbon monoxide peaks), high chlorine levels in the waste (1.7%) and low temperatures in the secondary combustion zone (660°C) all tended to increase the emission levels. The PCDD/PCDF ratio in the flue gas was found to depend on the chlorine level in the waste, fluctuations in the combustion process and the SO2:HCl ratio in the flue gas. The formation pathways were found to be affected by the quench time profiles in the post-combustion zone, fluctuations in the combustion process and addition of sulfur. In addition, increased levels of chlorine in the waste increased the chlorination degrees of both PCDDs and PCDFs. A tendency for increased SO2 levels in the flue gas to increase levels of polychlorinated dibenzothiophenes (sulfur analogues of PCDFs) was also detected, however the increases were much less significant than the reduction in PCDF levels.
  •  
6.
  • Phan, Duong Ngoc Chau, 1985- (författare)
  • The relationship between fly ash chemistry and the thermal formation of polychlorinated pollutants during waste incineration
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The thermal formation of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and naphthalenes (PCNs) is a major problem in waste incineration. Ideally, rather than relying on air cleaning systems and treatment techniques, their formation should be minimized or, if possible eliminated. The work presented in this thesis was conducted to obtain a deeper understanding of the thermal formation of PCDDs, PCDFs, PCBs, and PCNs during incineration using a 5 kW laboratory scale incinerator and two artificial wastes that were designed to reflect regional differences in waste composition.The first part of the thesis focuses on the validation of a recently-developed flue-gas sampling probe with enhanced cooling capabilities. Artifact formation of PCDDs and PCDFs can occur during the sampling of hot flue gases if the cooling is insufficient. The new probe was successfully used to collect samples at 700 °C without biasing the measured POP levels. The thermal formation of PCDDs, PCDFs, PCBs, and PCNs in the post-combustion zone of the incinerator was then studied by collecting flue gas samples at 400 °C, 300 °C, and 200 °C during the incineration of the two artificial wastes. Highly chlorinated POPs were formed in larger quantities when burning the waste with the higher content of metals and chlorine, which suggests that high metal levels in the waste favor the chlorination of less chlorinated POPs or otherwise facilitate the formation of highly chlorinated polyaromatics, possibly via the condensation of highly chlorinated phenols. The concentrations of these pollutants and the abundance of highly chlorinated homologues increased as the flue gas cooled. Fly ash particles play an important role in thermal POP formation by providing essential elements (carbon, chlorine, etc.) and catalytic sites. The chemical and mineralogical properties of fly ash samples were studied by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), and X-ray photoelectron spectroscopy (XPS) to determine their impact on thermal POP formation. Orthogonal Partial Least Squares (OPLS) modeling was used to identify correlations between the observed POP distributions and the physicochemical data. This investigation provided new insights into the impact of fly ash chemistry on thermal POP formation.In addition, the POP isomer distribution patterns generated during waste combustion were examined. These patterns are used to “fingerprint” mechanisms of POP formation. It was found that wastes containing large quantities of metals and chlorine favored the formation of highly chlorinated homologues including the very toxic 2,3,7,8-congeners. The data suggest that reducing fly ash emissions might increase the SO2 content of the flue gas and thereby suppress the Deacon process and the formation of harmful highly chlorinated aromatic species.
  •  
7.
  • Rahm, Sara, 1972- (författare)
  • Hydrolysis and photolysis of brominated flame retardants and some traditional persistent organic pollutants : Reactivity as a tool in fate assessement of chemicals
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An organic compound that remains in the environment for a long time is regarded as a persistent organic pollutant (POP). Still, persistency is not a well defined property with a firm definition. Instead it is a conceptual property of chemicals for which DDT and PCB are typical representatives. No organic chemicals in the environment are inert and are thus subjected to chemical transformation reactions in air, water, soil sediments and in biota. Environmental pollutants are distributed in the environment based on their physicochemical properties and their reactivity. While the former properties have been thoroughly studied and used in modelling of the fate of chemicals in the environment, the latter property – reactivity – has been investigated poorly. The far-reaching objective with the present thesis is to introduce the reactivity of chemicals into the concept of persistency. More specifically the aim is to develop methodologies for defining chemical reactivity by determination of disappearance reaction constants for hydrolysis and photolysis of actual or potential environmental contaminants. Other transformation reactions in the environment such as oxidations reductions and radical reactions are not included at this stage. In this thesis, hydrolysis include both substitution and elimination reactions. The developmental work is performed largely by comparing the reactivity of brominated flame retardants but also include several traditional contaminants for comparative reasons. A new method for determination of the rate of hydrolysis of chemicals is developed using methoxide in methanol and DMF, which is done by using hexachlorobenzene (HCB) as the test chemical. The method is applied to several other chemicals, particularly polybrominated diphenyl ethers (PBDEs) but also traditional POPs. Chemicals such as DDT,TBBPA 2,3-dibromopropyl ether react very fast and the perbrominated diphenyl ether (BDE-209) is shown to undergo nucleophilic aromatic substitution faster than HCB. Compounds that can undergo elimination are rapidly degraded while the rates of substitution reactions of aromatic chemicals depend on the degree of halogenation. A new method is used for studying photolytic reactions based on irradiation of UV light at environmentally relevant wavelengths and with the study compounds dissolved in methanol/water (4:1). Disappearance constants and quantum yields are determined for several traditional and potential environmental contaminants. Halogenated phenols are rapidly transformed under these conditions. Polybrominated aromatics are indicated to react faster than the corresponding chlorinated compounds. The two methods for studying reactivity of chemicals have the potential of being useful to predict the persistency of chemicals in the environment. Such predictions must however also include the compound’s susceptibility to oxidation, reduction and radical reactions in all major environmental compartments and knowledge of their physicochemical characteristics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy