SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marks Melissa) "

Sökning: WFRF:(Marks Melissa)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Holmes, Natalie P., et al. (författare)
  • Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications
  • 2018
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 30:18, s. 6521-6531
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticle organic photovoltaics, a subfield of organic photovoltaics (OPV), has attracted increasing interest in recent years due to the eco-friendly fabrication of solar modules afforded by colloidal ink technology. Importantly, using this approach it is now possible to engineer the microstructure of the light absorbing/charge generating layer of organic photovoltaics; decoupling film morphology from film deposition. In this study, single-component nanoparticles of poly(3-hexylthiophene) (P3HT) and phenyl-C61 butyric acid methyl ester (PC61BM) were synthesized and used to generate a two-phase microstructure with control over domain size prior to film deposition. Scanning transmission X-ray microscopy (STXM) and electron microscopy were used to characterize the thin film morphology. Uniquely, the measured microstructure was a direct input for a nanoscopic kinetic Monte Carlo (KMC) model allowing us to assess exciton transport properties that are experimentally inaccessible in these single-component particles. Photoluminescence, UV-vis spectroscopy measurements, and KMC results of the nanoparticle thin films enabled the calculation of an experimental exciton dissociation efficiency (ηED) of 37% for the two-phase microstructure. The glass transition temperature (Tg) of the materials was characterized with dynamic mechanical thermal analysis (DMTA) and thermal annealing led to an increase in ηED to 64% due to an increase in donor-acceptor interfaces in the thin film from both sintering of neighboring opposite-type particles in addition to the generation of a third mixed phase from diffusion of PC61BM into amorphous P3HT domains. As such, this study demonstrates the higher level of control over donor-acceptor film morphology enabled by customizing nanoparticulate colloidal inks, where the optimal three-phase film morphology for an OPV photoactive layer can be designed and engineered.
  •  
2.
  • Pan, Xun, et al. (författare)
  • Environmentally friendly preparation of nanoparticles for organic photovoltaics
  • 2018
  • Ingår i: Organic Electronics: physics, materials, applications. - : Elsevier BV. - 1566-1199. ; 59, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous nanoparticle dispersions were prepared from a conjugated polymer poly[thiophene-2,5-diyl-alt-5,10-bis((2-hexyldecyl)oxy)dithieno[3,2-c:3′,2′-h][1,5]naphthyridine-2,7-diyl] (PTNT) and fullerene blend utilizing chloroform as well as a non-chlorinated and environmentally benign solvent, o-xylene, as the miniemulsion dispersed phase solvent. The nanoparticles (NPs) in the solid-state film were found to coalesce and offered a smooth surface topography upon thermal annealing. Organic photovoltaics (OPVs) with photoactive layer processed from the nanoparticle dispersions prepared using chloroform as the miniemulsion dispersed phase solvent were found to have a power conversion efficiency (PCE) of 1.04%, which increased to 1.65% for devices utilizing NPs prepared from o-xylene. Physical, thermal and optical properties of NPs prepared using both chloroform and o-xylene were systematically studied using dynamic mechanical thermal analysis (DMTA) and photoluminescence (PL) spectroscopy and correlated to their photovoltaic properties. The PL results indicate different morphology of NPs in the solid state were achieved by varying miniemulsion dispersed phase solvent.
  •  
3.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy