SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marland G.) "

Sökning: WFRF:(Marland G.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matthews, R.W, et al. (författare)
  • Carbon in wood products and product substitution
  • 2007
  • Ingår i: Forestry and Climate Change. - Cambridge, Mass. : CABI Publishing. - 9781845932947 ; , s. 91-104
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Schlamadinger, B, et al. (författare)
  • Towards a Standard Methodology for Greenhouse Gas Balances of Bioenergy System in Comparison with Fossil Fuel System, Biomass and Bioenergy
  • 1997
  • Ingår i: Biomass & Bioenergy. - 1873-2909. ; 13:6, s. 359-375
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, which was prepared as part of IEA Bioenergy Task XV (“Greenhouse Gas Balances of Bioenergy Systems”), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas-emissions point of view.
  •  
3.
  •  
4.
  • Canadel, Josep G., et al. (författare)
  • Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 104:47, s. 18866-18870
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000–2006, the emissions growth rate increased from 1.3% to 3.3% y −1. The third process is indicated by increasing evidence (P = 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ≈65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate–carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing.
  •  
5.
  • Cintas Sanchez, Olivia, 1982, et al. (författare)
  • Carbon balances of bioenergy systems using biomass from forests managed with long rotations: bridging the gap between stand and landscape assessments
  • 2017
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 9:7, s. 1238-1251
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies report different findings concerning the climate benefits of bioenergy, in part due to varying scope and use of different approaches to define spatial and temporal system boundaries. We quantify carbon balances for bioenergy systems that use biomass from forests managed with long rotations, employing different approaches and boundary conditions. Two approaches to represent landscapes and quantify their carbon balances - expanding vs. constant spatial boundaries - are compared. We show that for a conceptual forest landscape, constructed by combining a series of time-shifted forest stands, the two approaches sometimes yield different results. We argue that the approach that uses constant spatial boundaries is preferable because it captures all carbon flows in the landscape throughout the accounting period. The approach that uses expanding system boundaries fails to accurately describe the carbon fluxes in the landscape due to incomplete coverage of carbon flows and influence of the stand-level dynamics, which in turn arise from the way temporal system boundaries are defined on the stand level. Modelling of profit-driven forest management using location-specific forest data shows that the implications for carbon balance of management changes across the landscape ( which are partly neglected when expanding system boundaries are used) depend on many factors such as forest structure and forest owners' expectations of market development for bioenergy and other wood products. Assessments should not consider forest-based bioenergy in isolation but should ideally consider all forest products and how forest management planning as a whole is affected by bioenergy incentives - and how this in turn affects carbon balances in forest landscapes and forest product pools. Due to uncertainties, we modelled several alternative scenarios for forest products markets. We recommend that future work consider alternative scenarios for other critical factors, such as policy options and energy technology pathways.
  •  
6.
  • Cowie, A. L., et al. (författare)
  • Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy
  • 2021
  • Ingår i: Global Change Biology Bioenergy. - : John Wiley and Sons Inc. - 1757-1693 .- 1757-1707. ; 13:8, s. 1210-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • The scientific literature contains contrasting findings about the climate effects of forest bioenergy, partly due to the wide diversity of bioenergy systems and associated contexts, but also due to differences in assessment methods. The climate effects of bioenergy must be accurately assessed to inform policy-making, but the complexity of bioenergy systems and associated land, industry and energy systems raises challenges for assessment. We examine misconceptions about climate effects of forest bioenergy and discuss important considerations in assessing these effects and devising measures to incentivize sustainable bioenergy as a component of climate policy. The temporal and spatial system boundary and the reference (counterfactual) scenarios are key methodology choices that strongly influence results. Focussing on carbon balances of individual forest stands and comparing emissions at the point of combustion neglect system-level interactions that influence the climate effects of forest bioenergy. We highlight the need for a systems approach, in assessing options and developing policy for forest bioenergy that: (1) considers the whole life cycle of bioenergy systems, including effects of the associated forest management and harvesting on landscape carbon balances; (2) identifies how forest bioenergy can best be deployed to support energy system transformation required to achieve climate goals; and (3) incentivizes those forest bioenergy systems that augment the mitigation value of the forest sector as a whole. Emphasis on short-term emissions reduction targets can lead to decisions that make medium- to long-term climate goals more difficult to achieve. The most important climate change mitigation measure is the transformation of energy, industry and transport systems so that fossil carbon remains underground. Narrow perspectives obscure the significant role that bioenergy can play by displacing fossil fuels now, and supporting energy system transition. Greater transparency and consistency is needed in greenhouse gas reporting and accounting related to bioenergy. 
  •  
7.
  • Cowie, Annette L., et al. (författare)
  • Policy institutions and forest carbon
  • 2016
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-6798 .- 1758-678X. ; 6:9, s. 805-805
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy