SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marroncle J) "

Sökning: WFRF:(Marroncle J)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alcorn, J, et al. (författare)
  • Basic instrumentation for Hall A at Jefferson Lab
  • 2004
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 522:3, s. 294-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro-and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2 x 10(-4). A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10(38) CM-2 s(-1). The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium. (C) 2003 Elsevier B.V. All rights reserved.
  •  
3.
  •  
4.
  • Torregrosa-Martin, C., et al. (författare)
  • Overview of IFMIF-DONES diagnostics : Requirements and techniques
  • 2023
  • Ingår i: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 191
  • Tidskriftsartikel (refereegranskat)abstract
    • The IFMIF-DONES Facility is a unique first-class scientific infrastructure whose construction is foreseen in Granada, Spain, in the coming years. Strong integration efforts are being made at the current project phase aiming at harmonizing the ongoing design of the different and complex Systems of the facility. The consolidation of the Diagnostics and Instrumentation, transversal across many of them, is a key element of this purpose. A top-down strategy is proposed for a systematic Diagnostics Review and Requirement definition, putting emphasis in the one-of-a-kind instruments necessary by the operational particularities of some of the Systems, as well as to the harsh environment that they shall survive. In addition, other transversal aspects such as the ones related to Safety and Machine Protection and their respective requirements shall be also considered. The goal is therefore to advance further and solidly in the respective designs, identify problems in advance, and steer the Diagnostics development and validation campaigns that will be required. The present work provides an overview of this integration strategy as well as a description of some of the most challenging Diagnostics and Instruments within the facility, including several proposed techniques currently under study.
  •  
5.
  • Papaevangelou, T., et al. (författare)
  • ESS nBLM : Beam loss monitors based on fast neutron detection
  • 2018
  • Ingår i: HB2018 - Proceedings of the 61st ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams. - 9783954502028 ; , s. 404-409
  • Konferensbidrag (refereegranskat)abstract
    • A new type of Beam Loss Monitor (BLM) system is being developed for use in the European Spallation Source (ESS) linac, primarily aiming to cover the low energy part (proton energies between 3-100 MeV). In this region of the linac, typical BLM detectors based on charged particle detection (i.e. Ionization Chambers) are not appropriate because the expected particle fields will be dominated by neutrons and photons. Another issue is the photon background due to the RF cavities, which is mainly due to field emission from the electrons from the cavity walls, resulting in bremsstrahlung photons. The idea for the ESS neutron sensitive BLM system (ESS nBLM) is to use Micromegas detectors specially designed to be sensitive to fast neutrons and insensitive to low energy photons (X and gammas). In addition, the detectors must be insensitive to thermal neutrons, because those neutrons may not be directly correlated to beam losses. The appropriate configuration of the Micromegas operating conditions will allow excellent timing, intrinsic photon background suppression and individual neutron counting, extending thus the dynamic range to very low particle fluxes. 
  •  
6.
  • Shea, T. J., et al. (författare)
  • Overview and status of diagnostics for the ESS project
  • 2018
  • Ingår i: Proceedings of the 6th International Beam Instrumentation Conference, IBIC 2017. - 9783954501922 ; , s. 8-15
  • Konferensbidrag (refereegranskat)abstract
    • The European Spallation Source, now under construction in Lund, Sweden, aims to be the world's most powerful pulsed neutron scattering facility. Driving the neutron source is a 5 MW superconducting proton linear accelerator operating at 4 percent beam duty factor and 14 Hz repetition rate. Nineteen partner institutions from across Europe are working with the Accelerator Division in Lund to design and construct the accelerator. The suite of accelerator instrumentation consists of over 20 unique system types developed by over 20 partners and collaborators. Although the organizational complexity presents challenges, it also provides the vast capabilities required to achieve the technical goals. At this time, the beam instrumentation team is in transition, completing the design phase while scaling up to the deployment phase. Commissioning of the ion source has commenced in Catania, preparations for installation on the Lund site are ramping up, and basic R&D on target instrumentation continues. Beam commissioning results from the systems immediately following the ion source will be presented, along with technical highlights and status of the many remaining instrumentation systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy