SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marsh Daniel R. Dr.) "

Sökning: WFRF:(Marsh Daniel R. Dr.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
4.
  •  
5.
  •  
6.
  • Lossow, Stefan, 1977- (författare)
  • Observations of water vapour in the middle atmosphere
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Water vapour is the most important greenhouse gas and plays a fundamental role in the climate system and for the chemistry of the Earth's atmosphere. This thesis presents observations of water vapour in the middle atmosphere with a particular focus on the mesosphere. The majority of these observations presented in this thesis have been performed by the Swedish satellite Odin, providing global observations since 2001. Further observations come from the Hygrosonde-2 campaign in December 2001 based on balloon and rocket-borne measurements. A general overview of Odin's water vapour measurements in the middle atmosphere is given. The optimisation of the mesospheric water vapour retrieval is presented in detail.The analysis of the observations has focused mainly on different dynamical aspects utilising the characteristic of water vapour as a dynamical tracer in the middle atmosphere. One application is the mesospheric part of the semi-annual oscillation (SAO). The observations reveal that this oscillation is the dominant pattern of variability between 30°S and 10°N in the mesosphere up to an altitude of 80 km. Above 90 km the SAO is dominating at all latitudes in the tropics and subtropics. It is shown that the SAO exhibits a distinct phase change between 75 km and 80 km in the tropical region.This thesis also presents the first satellite observations of water vapour in the altitude range between 90 km and 110 km, extending the observational database up into the lower thermosphere. In the polar regions water vapour exhibits the annual maximum during winter time above 95 km, mainly caused by upwelling during this season. This behaviour is different from that observed in the subjacent part of the mesosphere where the annual maximum occurs during summer time.The Hygrosonde-2 campaign provided a high resolution measurement of water vapour in the vicinity of the polar vortex edge. This edge prevents horizontal transport causing different water vapour characteristics inside and outside the polar vortex. The observations show that this separating behaviour extends high up into the mesosphere. Small scale transitions in the Hygrosonde-2 profile between conditions inside and outside the vortex coincided with wind shears caused by gravity waves.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy