SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martínez Sykora Juan) "

Sökning: WFRF:(Martínez Sykora Juan)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheung, Mark C. M., et al. (författare)
  • Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Current state-of-the-art spectrographs cannot resolve the fundamental spatial (subarcseconds) and temporal (less than a few tens of seconds) scales of the coronal dynamics of solar flares and eruptive phenomena. The highest-resolution coronal data to date are based on imaging, which is blind to many of the processes that drive coronal energetics and dynamics. As shown by the Interface Region Imaging Spectrograph for the low solar atmosphere, we need high-resolution spectroscopic measurements with simultaneous imaging to understand the dominant processes. In this paper: (1) we introduce the Multi-slit Solar Explorer (MUSE), a spaceborne observatory to fill this observational gap by providing high-cadence (<20 s), subarcsecond-resolution spectroscopic rasters over an active region size of the solar transition region and corona; (2) using advanced numerical models, we demonstrate the unique diagnostic capabilities of MUSE for exploring solar coronal dynamics and for constraining and discriminating models of solar flares and eruptions; (3) we discuss the key contributions MUSE would make in addressing the science objectives of the Next Generation Solar Physics Mission (NGSPM), and how MUSE, the high-throughput Extreme Ultraviolet Solar Telescope, and the Daniel K Inouye Solar Telescope (and other ground-based observatories) can operate as a distributed implementation of the NGSPM. This is a companion paper to De Pontieu et al., which focuses on investigating coronal heating with MUSE.
  •  
2.
  • Chintzoglou, Georgios, et al. (författare)
  • ALMA and IRIS Observations of the Solar Chromosphere. I. An On-disk Type II Spicule
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 906:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of the solar chromosphere obtained simultaneously with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph. The observatories targeted a chromospheric plage region of which the spatial distribution (split between strongly and weakly magnetized regions) allowed the study of linear-like structures in isolation, free of contamination from background emission. Using these observations in conjunction with a radiative magnetohydrodynamic 2.5D model covering the upper convection zone all the way to the corona that considers nonequilibrium ionization effects, we report the detection of an on-disk chromospheric spicule with ALMA and confirm its multithermal nature.
  •  
3.
  • Chintzoglou, Georgios, et al. (författare)
  • ALMA and IRIS Observations of the Solar Chromosphere. II. Structure and Dynamics of Chromospheric Plages
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 906:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose and employ a novel empirical method for determining chromospheric plage regions, which seems to better isolate a plage from its surrounding regions than other methods commonly used. We caution that isolating a plage from its immediate surroundings must be done with care in order to successfully mitigate statistical biases that, for instance, can impact quantitative comparisons between different chromospheric observables. Using this methodology, our analysis suggests that lambda = 1.25 mm free-free emission in plage regions observed with the Atacama Large Millimeter/submillimeter Array (ALMA)/Band6 may not form in the low chromosphere as previously thought, but rather in the upper chromospheric parts of dynamic plage features (such as spicules and other bright structures), i.e., near geometric heights of transition-region temperatures. We investigate the high degree of similarity between chromospheric plage features observed in ALMA/Band6 (at 1.25 mm wavelengths) and the Interface Region Imaging Spectrograph (IRIS)/Si iv at 1393 angstrom. We also show that IRIS/Mg ii h and k are not as well correlated with ALMA/Band6 as was previously thought, and we discuss discrepancies with previous works. Lastly, we report indications of chromospheric heating due to propagating shocks supported by the ALMA/Band6 observations.
  •  
4.
  • De Pontieu, Bart, et al. (författare)
  • Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multi-slit Solar Explorer (MUSE) is a proposed mission composed of a multislit extreme ultraviolet (EUV) spectrograph (in three spectral bands around 171 Å, 284 Å, and 108 Å) and an EUV context imager (in two passbands around 195 Å and 304 Å). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (≤05) and temporal resolution (down to ∼0.5 s for sit-and-stare observations), thanks to its innovative multislit design. By obtaining spectra in four bright EUV lines (Fe ix 171 Å, Fe xv 284 Å, Fe xix–Fe xxi 108 Å) covering a wide range of transition regions and coronal temperatures along 37 slits simultaneously, MUSE will, for the first time, "freeze" (at a cadence as short as 10 s) with a spectroscopic raster the evolution of the dynamic coronal plasma over a wide range of scales: from the spatial scales on which energy is released (≤05) to the large-scale (∼170'' × 170'') atmospheric response. We use numerical modeling to showcase how MUSE will constrain the properties of the solar atmosphere on spatiotemporal scales (≤05, ≤20 s) and the large field of view on which state-of-the-art models of the physical processes that drive coronal heating, flares, and coronal mass ejections (CMEs) make distinguishing and testable predictions. We describe the synergy between MUSE, the single-slit, high-resolution Solar-C EUVST spectrograph, and ground-based observatories (DKIST and others), and the critical role MUSE plays because of the multiscale nature of the physical processes involved. In this first paper, we focus on coronal heating mechanisms. An accompanying paper focuses on flares and CMEs.
  •  
5.
  • Martínez-Sykora, Juan, et al. (författare)
  • Chromospheric Heating from Local Magnetic Growth and Ambipolar Diffusion under Nonequilibrium Conditions
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 943:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The heating of the chromosphere in internetwork regions remains one of the foremost open questions in solar physics. In the present study, we tackle this old problem by using a very-high-spatial-resolution simulation of quiet-Sun conditions performed with radiative MHD numerical models and interface region imaging spectrograph (IRIS) observations. We have expanded a previously existing 3D radiative MHD numerical model of the solar atmosphere, which included self-consistently locally driven magnetic amplification in the chromosphere, by adding ambipolar diffusion and time-dependent nonequilibrium hydrogen ionization to the model. The energy of the magnetic field is dissipated in the upper chromosphere, providing a large temperature increase due to ambipolar diffusion and nonequilibrium ionization (NEQI). At the same time, we find that adding the ambipolar diffusion and NEQI in the simulation has a minor impact on the local growth of the magnetic field in the lower chromosphere and its dynamics. Our comparison between synthesized Mg ii profiles from these high-spatial-resolution models, with and without ambipolar diffusion and NEQI, and quiet-Sun and coronal hole observations from IRIS now reveal a slightly better correspondence. The intensity of profiles is increased, and the line cores are slightly broader when ambipolar diffusion and NEQI effects are included. Therefore, the Mg ii profiles are closer to those observed than in previous models, though some differences still remain.
  •  
6.
  • Martinez-Sykora, Juan, et al. (författare)
  • Ion-neutral Interactions and Nonequilibrium Ionization in the Solar Chromosphere
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 889:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermal structure of the chromosphere is regulated through a complex interaction of various heating processes, radiative cooling, and the ionization degree of the plasma. Here, we study the impact on the thermal properties of the chromosphere when including the combined action of nonequilibrium ionization (NEI) of hydrogen and helium and ion-neutral interaction effects. We have performed a 2.5D radiative magnetohydrodynamic simulation using the Bifrost code. This model includes ion-neutral interaction effects by solving the generalized Ohm' s law (GOL) as well as NEI for hydrogen and helium. The GOL equation includes ambipolar diffusion and the Hall term. We compare this simulation with another simulation that computes the ionization in local thermodynamic equilibrium (LTE) including ion-neutral interaction effects. Our numerical models reveal substantial thermal differences in magneto-acoustic shocks, the wake behind the shocks, spicules, low-lying magnetic loops, and the transition region. In particular, we find that heating through ambipolar diffusion in shock wakes is substantially less efficient, while in the shock fronts themselves it is more efficient, under NEI conditions than when assuming LTE.
  •  
7.
  • Martínez-Sykora, Juan, et al. (författare)
  • The Formation Height of Millimeter-wavelength Emission in the Solar Chromosphere
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 891:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past few years, the ALMA radio telescope has become available for solar observations. ALMA diagnostics of the solar atmosphere are of high interest because of the theoretically expected linear relationship between the brightness temperature at millimeter wavelengths and the local gas temperature in the solar atmosphere. Key for the interpretation of solar ALMA observations is understanding where in the solar atmosphere the ALMA emission originates. Recent theoretical studies have suggested that ALMA bands at 1.2 (band 6) and 3 mm (band 3) form in the middle and upper chromosphere at significantly different heights. We study the formation of ALMA diagnostics using a 2.5D radiative MHD model that includes the effects of ion-neutral interactions (ambipolar diffusion) and nonequilibrium ionization of hydrogen and helium. Our results suggest that in active regions and network regions, observations at both wavelengths most often originate from similar heights in the upper chromosphere, contrary to previous results. Nonequilibrium ionization increases the opacity in the chromosphere so that ALMA mostly observes spicules and fibrils along the canopy fields. We combine these modeling results with observations from IRIS, SDO, and ALMA to suggest a new interpretation for the recently reported dark chromospheric holes, regions of very low temperatures in the chromosphere.
  •  
8.
  • Poli, Sven, et al. (författare)
  • Penumbral Rescue by normobaric O?=?O administration in patients with ischemic stroke and target mismatch proFile (PROOF): Study protocol of a phase IIb trial
  • 2024
  • Ingår i: INTERNATIONAL JOURNAL OF STROKE. - 1747-4930 .- 1747-4949. ; 19:1, s. 120-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Oxygen is essential for cellular energy metabolism. Neurons are particularly vulnerable to hypoxia. Increasing oxygen supply shortly after stroke onset could preserve the ischemic penumbra until revascularization occurs.Aims: PROOF investigates the use of normobaric oxygen (NBO) therapy within 6 h of symptom onset/notice for brain-protective bridging until endovascular revascularization of acute intracranial anterior-circulation occlusion.Methods and design: Randomized (1:1), standard treatment-controlled, open-label, blinded endpoint, multicenter adaptive phase IIb trial.Study outcomes: Primary outcome is ischemic core growth (mL) from baseline to 24 h (intention-to-treat analysis). Secondary efficacy outcomes include change in NIHSS from baseline to 24 h, mRS at 90 days, cognitive and emotional function, and quality of life. Safety outcomes include mortality, intracranial hemorrhage, and respiratory failure. Exploratory analyses of imaging and blood biomarkers will be conducted.Sample size: Using an adaptive design with interim analysis at 80 patients per arm, up to 456 participants (228 per arm) would be needed for 80% power (one-sided alpha 0.05) to detect a mean reduction of ischemic core growth by 6.68 mL, assuming 21.4 mL standard deviation.Discussion: By enrolling endovascular thrombectomy candidates in an early time window, the trial replicates insights from preclinical studies in which NBO showed beneficial effects, namely early initiation of near 100% inspired oxygen during short temporary ischemia. Primary outcome assessment at 24 h on follow-up imaging reduces variability due to withdrawal of care and early clinical confounders such as delayed extubation and aspiration pneumonia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy