SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marthews Toby R.) "

Sökning: WFRF:(Marthews Toby R.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huaraca Huasco, Walter, et al. (författare)
  • Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes
  • 2014
  • Ingår i: Plant Ecology & Diversity. - : Informa UK Limited. - 1755-0874 .- 1755-1668. ; 7:1-2, s. 125-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tropical montane cloud forests (TMCF) are unique ecosystems with high biodiversity and large carbon reservoirs. To date there have been limited descriptions of the carbon cycle of TMCF. Aims: We present results on the production, allocation and cycling of carbon for two mid-elevation (1500-1750 m) tropical montane cloud forest plots in San Pedro, Kosnipata Valley, Peru. Methods: We repeatedly recorded the components of net primary productivity (NPP) using biometric measurements, and autotrophic (R-a) and heterotrophic (Rh) respiration, using gas exchange measurements. From these we estimated gross primary productivity (GPP) and carbon use efficiency (CUE) at the plot level. Results: The plot at 1500 m was found very productive, with our results comparable with the most productive lowland Amazonian forests. The plot at 1750 m had significantly lower productivity, possibly because of greater cloud immersion. Both plots had similar patterns of NPP allocation, a substantial seasonality in NPP components and little seasonality in R-a. Conclusions: These two plots lie within the ecotone between lower and upper montane forests, near the level of the cloud base. Climate change is likely to increase elevation of the cloud base, resulting in shifts in forest functioning. Longer-term surveillance of the carbon cycle at these sites would yield valuable insights into the response of TMCFs to a shifting cloud base.
  •  
2.
  • Malhi, Yadvinder, et al. (författare)
  • The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 21:6, s. 2283-2295
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.
  •  
3.
  • Huaraca Huasco, Walter, et al. (författare)
  • Fine root dynamics across pantropical rainforest ecosystems
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:15, s. 3657-3680
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
  •  
4.
  • Malhi, Yadvinder, et al. (författare)
  • The Global Ecosystems Monitoring network : Monitoring ecosystem productivity and carbon cycling across the tropics
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • A rich understanding of the productivity, carbon and nutrient cycling of terrestrial ecosystems is essential in the context of understanding, modelling and managing the future response of the biosphere to global change. This need is particularly acute in tropical ecosystems, home to over 60% of global terrestrial productivity, over half of planetary biodiversity, and hotspots of anthropogenic pressure. In recent years there has been a surge of activity in collecting data on the carbon cycle, productivity, and plant functional traits of tropical ecosystems, most intensively through the Global Ecosystems Monitoring network (GEM). The GEM approach provides valuable insights by linking field-based ecosystem ecology with the needs of Earth system science. In this paper, we review and synthesize the context, history and recent scientific output from the GEM network. Key insights have emerged on the spatial and temporal variability of ecosystem productivity and on the role of temperature and drought stress on ecosystem function and resilience. New work across the network is now linking carbon cycling to nutrient cycling and plant functional traits, and subsequently to airborne remote sensing. We discuss some of the novel emerging patterns and practical and methodological challenges of this approach, and examine current and possible future directions, both within this network and as lessons for a more general terrestrial ecosystem observation scheme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Malhi, Yadvinder (4)
Doughty, Christopher ... (4)
Meir, Patrick (4)
Marthews, Toby R. (4)
Aragão, Luiz E. O. C ... (3)
Girardin, Cecile A. ... (3)
visa fler...
Silva Espejo, Javier ... (3)
Metcalfe, Dan (2)
Adu-Bredu, Stephen (2)
Moore, Sam (2)
Phillips, Oliver L. (2)
Metcalfe, Daniel B. (2)
Araujo-Murakami, Ale ... (2)
Farfan Amezquita, Fi ... (2)
Huaraca Huasco, Walt ... (2)
da Costa, Antonio C. ... (2)
del Aguila-Pasquel, ... (2)
Riutta, Terhi (2)
Rifai, Sami W. (2)
Aguirre-Gutierrez, J ... (1)
Oliveras, Imma (1)
Berenguer, Erika (1)
Metcalfe, Daniel (1)
Puma Vilca, Beisit L ... (1)
Farfan-Rios, William (1)
Addo-Danso, Shalom D ... (1)
Goldsmith, Gregory R ... (1)
Rocha, Wanderley (1)
Morel, Alexandra C. (1)
Silman, Miles R. (1)
Marimon, Beatriz S. (1)
Hancco Pacha, Fernan ... (1)
Freitag, Renata (1)
Demissie, Sheleme (1)
Galiano Cabrera, Dar ... (1)
Durand Baca, Liliana (1)
Oblitas Mendoza, Eri ... (1)
Quesada, Carlos Albe ... (1)
Evouna Ondo, Fidele (1)
Edzang Ndong, Josué (1)
Jeffery, Kathryn J. (1)
Mihindou, Vianet (1)
White, Lee J. T. (1)
N'ssi Bengone, Natac ... (1)
Ibrahim, Forzia (1)
Duah-Gyamfi, Akwasi (1)
Djaney Djagbletey, G ... (1)
Owusu-Afriyie, Kenne ... (1)
Amissah, Lucy (1)
Mbou, Armel T. (1)
visa färre...
Lärosäte
Lunds universitet (3)
Umeå universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy