SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mas Hesse M.) "

Sökning: WFRF:(Mas Hesse M.)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
2.
  • Atek, H., et al. (författare)
  • Empirical estimate of Lyα escape fraction in a statistical sample of Lyα emitters
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 506:2, s. L1-L4
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: The Lyman-alpha (Lyα) recombination line is a fundamental tool for galaxy evolution studies and modern observational cosmology. However, subsequent interpretations are still prone to a number of uncertainties. Besides numerical efforts, empirical data are urgently needed for a better understanding of the Lyα escape process. Aims: We empirically estimate the Lyα escape fraction in a statistically significant sample of galaxies in a redshift range z ~ 0 - 0.3. This estimate will constrain interpretations of current high-redshift Lyα observations. Methods: An optical spectroscopic follow-up of a sub-sample of 24 Lyα emitters detected by GALEX at z ~ 0.2 - 0.3, combined with a UV-optical sample of local starbursts, both with matched apertures, allow us to quantify the dust extinction through Balmer lines, and to estimate the Lyα escape fraction from the Hα flux corrected for extinction in the framework of the recombination theory. Results: The global escape fraction of Lyα radiation spans a wide range of values and fesc(Lyα) clearly decreases with increasing nebular dust extinction E(B-V). Several objects show fesc(Lyα) greater than fesc(continuum), which may be taken as observational evidence for a clumpy ISM geometry or for an aspherical ISM. Selection biases and aperture size effects may still prevail between z ~ 0.2 - 0.3 Lyman-alpha emitters (LAEs) and local starbursts and may explain the difference observed for fesc(Lyα).
  •  
3.
  • Guaita, Lucia, et al. (författare)
  • The Lyman alpha reference sample IV. Morphology at low and high redshift
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The transport of Ly alpha photons in galaxies is a complex process and the conditions under which Ly alpha photons manage to escape from certain galaxies is still under investigation. The Lyman alpha reference sample (LARS) is a sample of 14 local star-forming galaxies, designed to study Ly alpha in detail and relate it to rest-frame UV and optical emission. Aims. With the aim of identifying rest-frame UV and optical properties, which are typical of Ly alpha emitters (LAEs, galaxies with EW(Ly alpha) > 20 angstrom) at both low and high redshift, we investigated the morphological properties of the LARS galaxies, in particular the ones that exhibit intense Ly alpha radiation. Methods. We measured sizes and morphological parameters in the continuum, Ly alpha, and Ha images. We studied morphology by using the Gini coefficient vs. M20 and asymmetry vs. concentration diagrams. We then simulated LARS galaxies at z similar to 2 and 5.7, performing the same morphological measurements. We also investigated the detectability of LARS galaxies in current deep field observations. The subsample of LAEs within LARS (LARS-LAEs) was stacked to provide a comparison to stacking studies performed at high redshift. Results. LARS galaxies have continuum size, stellar mass, and rest-frame absolute magnitude typical of Lyman break analogues in the local Universe and also similar to 2 < z < 3 star-forming galaxies and massive LAEs. LARS optical morphology is consistent with the one of merging systems, and irregular or starburst galaxies. For the first time we quantify the morphology in Ly alpha images: even if a variety of intrinsic conditions of the interstellar medium can favour the escape of Ly alpha photons, LARS-LAEs appear small in the continuum, and their Ly alpha is compact. LARS galaxies tend to be more extended in Ly alpha than in the rest-frame UV. It means that Ly alpha photons escape by forming haloes around HII regions of LARS galaxies. Conclusions. The stack of LARS-LAE Ly alpha images is peaked in the centre, indicating that the conditions, which make a galaxy an LAE, tend to produce a concentrated surface brightness profile. On the other hand, the stack of all LARS galaxies is shallower and more extended. This can be caused by the variety of dust and HI amount and distribution, which produces a more complex, patchy, and extended profile, like the one observed for Lyman break galaxies that can contribute to the stack. We cannot identify a single morphological property that controls whether a galaxy emits a net positive Ly alpha flux. However, the LARS-LAEs have continuum properties consistent with merging systems.
  •  
4.
  • Herenz, Edmund Christian, et al. (författare)
  • The Lyman alpha reference sample VII. Spatially resolved H alpha kinematics
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • We present integral field spectroscopic observations with the Potsdam Multi-Aperture Spectrophotometer of all 14 galaxies in the z similar to 0.1 Lyman Alpha Reference Sample (LARS). We produce 2D line-of-sight velocity maps and velocity dispersion maps from the Balmer alpha (H alpha) emission in our data cubes. These maps trace the spectral and spatial properties of the LARS galaxies' intrinsic Ly alpha radiation field. We show our kinematic maps that are spatially registered onto the Hubble Space Telescope H alpha and Lyman alpha (Ly alpha) images. We can conjecture a causal connection between spatially resolved H alpha kinematics and Ly alpha photometry for individual galaxies, however, no general trend can be established for the whole sample. Furthermore, we compute the intrinsic velocity dispersion sigma(0), the shearing velocity v(shear), and the v(shear)/sigma(0) ratio from our kinematic maps. In general LARS galaxies are characterised by high intrinsic velocity dispersions (54 km s(-1) median) and low shearing velocities (65 km s(-1) median). The v(shear/sigma 0) values range from 0.5 to 3.2 with an average of 1.5. It is noteworthy that five galaxies of the sample are dispersion-dominated systems with v(shear)/sigma(0) < 1, and are thus kinematically similar to turbulent star-forming galaxies seen at high redshift. When linking our kinematical statistics to the global LARS Ly alpha properties, we find that dispersion-dominated systems show higher Ly alpha equivalent widths and higher Ly alpha escape fractions than systems with v(shear)/sigma(0) > 1. Our result indicates that turbulence in actively star-forming systems is causally connected to interstellar medium conditions that favour an escape of Ly alpha radiation.
  •  
5.
  • Komarova, Lena, et al. (författare)
  • Haro 11 : The Spatially Resolved Lyman Continuum Sources
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 967:2
  • Tidskriftsartikel (refereegranskat)abstract
    • As the nearest confirmed Lyman continuum (LyC) emitter, Haro 11 is an exceptional laboratory for studying LyC escape processes crucial to cosmic reionization. Our new Hubble Space Telescope/Cosmic Origins Spectrograph G130M/1055 observations of its three star-forming knots now reveal that the observed LyC originates in Knots B and C, with 903–912 Å luminosities of 1.9 ± 1.5 × 1040 erg s−1 and 0.9 ± 0.7 × 1040 erg s−1, respectively. We derive local escape fractions fesc,912 = 3.4% ± 2.9% and 5.1% ± 4.3% for Knots B and C, respectively. Our Starburst99 modeling shows dominant populations on the order of ∼1–4 Myr and 1–2 × 107M⊙ in each knot, with the youngest population in Knot B. Thus, the knot with the strongest LyC detection has the highest LyC production. However, LyC escape is likely less efficient in Knot B than in Knot C due to higher neutral gas covering. Our results therefore stress the importance of the intrinsic ionizing luminosity, and not just the escape fraction, for LyC detection. Similarly, the Lyα escape fraction does not consistently correlate with LyC flux, nor do narrow Lyα red peaks. High observed Lyα luminosity and low Lyα peak velocity separation, however, do correlate with higher LyC escape. Another insight comes from the undetected Knot A, which drives the Green Pea properties of Haro 11. Its density-bounded conditions suggest highly anisotropic LyC escape. Finally, both of the LyC-leaking Knots, B and C, host ultraluminous X-ray sources (ULXs). While stars strongly dominate over the ULXs in LyC emission, this intriguing coincidence underscores the importance of unveiling the role of accretors in LyC escape and reionization.
  •  
6.
  • Melinder, Jens, et al. (författare)
  • Lyman alpha escape from 45 star forming galaxies– the Lyα Reference Sample XIV
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • We present Lyα imaging of 45 low redshift star-forming galaxies observed with the Hubble space telescope. The galaxies have been selected to have moderate to high star formation rates using FUVluminosity and Hα equivalent width criteria, but no constraints on Lyα luminosity have been applied. We employ a pixel SED fitting code to obtain accurate continuum subtracted Lyα, Hα and Hβ maps. We find that Lyα is less concentrated than FUV and optical line emission in almost all galaxies with significant Lyα emission. We present global measurements of Lyα and other quantities measured in apertures designed to capture all of the Lyα emission. We then show how the escape fraction ofLyα relates to a number of other measured quantities (mass, metallicity, star formation, ionization parameter, and extinction). We find that the escape fraction is strongly anti-correlated with both nebular and stellar extinction, weakly anti-correlated with stellar mass, but no conclusive evidence for correlations to other quantities. We show that Lyα escape fractions are inconsistent with common dust extinction laws and discuss how a combination of radiative transfer effects and clumpy dust models can help resolve the discrepancies. We present a star formation rate calibration based on Lyαluminosity, where the equivalent width of Lyα is used to correct for non-unity escape fraction, and show that this relation provides a reasonably accurate calibration but with a large scatter. We also show stacked growth curves of Lyα for the galaxies that can be used to find aperture loss fractions at a given physical radius
  •  
7.
  • Oskinova, L. M., et al. (författare)
  • ULX contribution to stellar feedback : an intermediate-mass black hole candidate and the population of ULXs in the low-metallicity starburst galaxy ESO338-4
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. X-ray radiation from accreting compact objects is an important part of stellar feedback. The metal-poor galaxy ESO 338-4 has experienced vigorous starburst during the last <40 Myr and contains some of the most massive super star clusters in the nearby Universe. Given its starburst age and its star-formation rate, ESO 338-4 is one of the most efficient nearby manufactures of neutron stars and black holes, hence providing an excellent laboratory for feedback studies. Aims. We aim to use X-ray observations with the largest modern X-ray telescopes XMM-Newton and Chandra to unveil the most luminous accreting neutron stars and black holes in ESO 338-4. Methods. We compared X-ray images and spectra with integral field spectroscopic observations in the optical to constrain the nature of strong X-ray emitters. Results. X-ray observations uncover three ultraluminous X-ray sources (ULXs) in ESO 338-4. The brightest among them, ESO 338 X-1, has X-ray luminosity in excess of 10(40) erg s(-1). We speculate that ESO 338-4 X-1 is powered by accretion on an intermediate-mass (greater than or similar to 300 M-circle dot)black hole. We show that X-ray radiation from ULXs and hot superbubbles strongly contributes to He II ionization and general stellar feedback in this template starburst galaxy.
  •  
8.
  • Oti-Floranes, H., et al. (författare)
  • Multiwavelength analysis of the Lyman-alpha emitting galaxy Haro 2 : relation between the diffuse Lyman-alpha and soft X-ray emissions
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 546, s. A65-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Lyman-alpha emission is commonly used as star formation tracer in cosmological studies. Nevertheless, resonant scattering strongly affects the resulting luminosity, leading to variable and unpredictable escape fractions in different objects. Aims. To understand how the Ly alpha escape fraction depends on the properties of the star-forming regions, we need high spatial resolution multiwavelength studies of nearby Ly alpha emitters, like Haro 2. Methods. We study the Ly alpha emission of Haro 2 in connection with the properties of the young stellar population, the characteristics of the interstellar medium, the distribution and intensity of the Balmer emission lines and the properties of the X-ray emission. We have used HST-STIS spectral images along the major and minor axes of Haro 2 to characterize the Ly alpha emission, as well as FOC UV, WFPC-2 optical and NICMOS near infrared broadband-filter images to analyze the properties of the stellar population. WFPC-2 Ha image and ground-based spectroscopy allow us to study the Balmer emission lines. Finally, Chandra/ACIS X-ray images provide resolved distribution of the X-ray emission at various energy bands. The observational data are analyzed by comparison with the predictions from evolutionary synthesis models to constrain the properties of the star formation episode. Results. The UV, H alpha and far infrared luminosities of the Haro 2 nuclear starburst are well reproduced assuming a young stellar population with ages similar to 3.5-5.0 Myr, affected by differential intestellar extinctions. A significant fraction of the stars are completely obscured in the UV, being identifiable only indirectly by their contribution to the ionization of the gas and to the far infrared emission. The diffuse soft X-ray emission extending over the whole source is attributed to gas heated by the mechanical energy released by the starburst. A compact hard X-ray emission (likely an UltraLuminous X-ray source) has been identified in a star-forming condensation to the southeast. Both compact and diffuse Ly alpha emission components are observed along the major and minor axes in STIS spectral images. Ly alpha is spatially decoupled from Balmer lines emission, Balmer decrement and UV continuum. However, the diffuse Ly alpha component is spatially correlated with the diffuse soft X-ray emission. Moreover, unlike the compact Ly alpha emission, diffuse Ly alpha shows luminosities larger than predicted from H alpha, assuming case B recombination and considering the dust extinction as derived from H alpha/H beta. Conclusions. The Ly alpha emission closely associated to the massive stellar clusters is strongly affected by the properties of the surrounding neutral gas (presence of outflows, dust abundance), leading to even a range of escape fractions at different locations within the same starburst. On the other hand, we propose that the diffuse Ly alpha emission originates in gas ionized by the hot plasma responsible for the soft X-ray radiation, as suggested by their spatial correlation and by the measured L(H alpha)/L0.4-2.4keV ratios. Calibration of Ly alpha as star formation rate tracer should therefore include both effects (destruction vs. enhancement) to avoid biases in the study of galaxies at cosmological distances.
  •  
9.
  • Oti-Floranes, H., et al. (författare)
  • Physical properties and evolutionary state of the Lyman alpha emitting starburst galaxy IRAS 08339+6517
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566, s. A38-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Though Ly alpha emission is one of the most used tracers of massive star formation at high redshift, it is strongly affected by neutral gas radiation transfer effects. A correct understanding of these effects is required to properly quantify the star formation rate along the history of the Universe. Aims. We aim to parameterize the escape of Ly alpha photons as a function of the galaxy properties, in order to properly calibrate the Ly alpha luminosity as a tracer of star formation intensity at any age of the Universe. Methods. We have embarked on a program to study the properties of the Ly alpha emission (spectral profile, spatial distribution, relation to Balmer lines intensity,...) in a number of starburst galaxies in the Local Universe. The study is based on Hubble Space Telescope spectroscopic and imaging observations at various wavelengths, X-ray data, and ground-based spectroscopy, complemented with the use of evolutionary population synthesis models. Results. We present here the results obtained for one of those sources, IRAS 08339+6517, a strong Ly alpha emitter in the Local Universe, which is undergoing an intense episode of massive star formation. We have characterized the properties of the starburst, which transformed 1.4 x 10(8) M-circle dot of gas into stars around 5-6 Myr ago. The mechanical energy released by the central super stellar cluster (SSC), located in the core of the starburst, has created a cavity devoid of gas and dust around it, leaving a clean path through which the UV continuum of the SSC is observed, with almost no extinction. While the average extinction affecting the stellar continuum is significantly larger out of the cavity, with E(B - V) = 0.15 on average, we have not found any evidence for regions with very large extinctions, which could be hiding some young, massive stars not contributing to the global UV continuum. The observed soft and hard X-ray emissions are consistent with this scenario, being originated by the interstellar medium heated by the release of mechanical energy in the first case, and by a large number of active high-mass X-ray binaries (HMXBs) in the second. In addition to the central compact emission blob, we have identified a diffuse Ly alpha emission component smoothly distributed over the whole central area of IRAS 08339+6517. This diffuse emission is spatially decoupled from the UV continuum, the H alpha emission, or the H alpha/H beta ratio. Both locally and globally, the Ly alpha/H alpha ratio is lower than the Case B predictions, even after reddening correction, with an overall Ly alpha escape fraction of only 4%. Conclusions. We conclude that in IRAS 08339+6517 the Ly alpha photons resonantly scattered by an outflowing shell of neutral gas are being smoothly redistributed over the whole central area of the galaxy. Their increased probability of being destroyed by dust would explain the low Ly alpha escape fraction measured. In any case, in the regions where the diffuse Ly alpha emission shows the largest Ly alpha/H alpha ratios, no additional sources of Ly alpha emission are required, like ionization by hot plasma as proposed for Haro 2, another galaxy in our sample. These results stress again the importance of a proper correction of scattering and transfer effects when using Ly alpha to derive the star formation rate in high-redshift galaxies.
  •  
10.
  • Pardy, Stephen A., et al. (författare)
  • THE LYMAN ALPHA REFERENCE SAMPLE. III. PROPERTIES OF THE NEUTRAL ISM FROM GBT AND VLA OBSERVATIONS
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 794:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new Hi imaging and spectroscopy of the 14 UV-selected star-forming galaxies in the Lyman Alpha Reference Sample (LARS), aimed for a detailed study of the processes governing the production, propagation, and escape of Ly alpha photons. New Hi spectroscopy, obtained with the 100 m Green Bank Telescope (GBT), robustly detects the Hi spectral line in 11 of the 14 observed LARS galaxies (although the profiles of two of the galaxies are likely confused by other sources within the GBT beam); the three highest redshift galaxies are not detected at our current sensitivity limits. The GBT profiles are used to derive fundamental Hi line properties of the LARS galaxies. We also present new pilot Hi spectral line imaging of five of the LARS galaxies obtained with the Karl G. Jansky Very Large Array (VLA). This imaging localizes the Hi gas and provides a measurement of the total Hi mass in each galaxy. In one system, LARS 03 (UGC 8335 or Arp 238), VLA observations reveal an enormous tidal structure that extends over 160 kpc from the main interacting systems and that contains >10(9) M-circle dot of Hi. We compare various Hi properties with global Ly alpha quantities derived from Hubble Space Telescope measurements. The measurements of the Ly alpha escape fraction are coupled with the new direct measurements of Hi mass and significantly disturbed Hi velocities. Our robustly detected sample reveals tentative correlations between the total Hi mass and linewidth, and key Ly alpha tracers. Further, on global scales, these data support a complex coupling between Ly alpha propagation and the Hi properties of the surrounding medium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy