SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Masjuan P.) "

Search: WFRF:(Masjuan P.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Ferrario, M., et al. (author)
  • IRIDE : Interdisciplinary research infrastructure based on dual electron linacs and lasers
  • 2014
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 740, s. 138-146
  • Journal article (peer-reviewed)abstract
    • This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. [RIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
  •  
4.
  • Aguar-Bartolome, P., et al. (author)
  • New determination of the eta transition form factor in the Dalitz decay eta -> e(+) e(-) gamma with the Crystal Ball/TAPS detectors at the Mainz Microtron
  • 2014
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 89:4
  • Journal article (peer-reviewed)abstract
    • The Dalitz decay eta -> e(+) e(-) gamma has been measured in the gamma p -> eta p reaction with the Crystal Ball and TAPS multiphoton spectrometers, together with the photon-tagging facility at the Mainz Microtron MAMI. The experimental statistic used in this work is one order of magnitude greater than in any previous measurement of eta -> e(+) e(-) gamma. The value obtained for the slope parameter Lambda(-2) of the eta transition form factor, Lambda(-2) = (1.95 +/- 0.15(stat) +/- 0.10(syst)) GeV-2, is in good agreement with recent measurements conducted in eta -> e(+) e(-) gamma and eta -> mu(+) mu(-) gamma decays, as well as with recent form-factor calculations. The uncertainty obtained in the value of Lambda(-2) is lower compared to results from previous measurements of the eta -> e(+) e(-) gamma decay.
  •  
5.
  • Aoyama, T., et al. (author)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Research review (peer-reviewed)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view