SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maslowski P.) "

Search: WFRF:(Maslowski P.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Marconi, A., et al. (author)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Conference paper (peer-reviewed)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
2.
  • Marconi, Alessandro, et al. (author)
  • ELT-HIRES, the high resolution spectrograph for the ELT : Phase A study and path to construction
  • 2020
  • In: Ground-based and Airborne Instrumentation for Astronomy VIII. - : SPIE - International Society for Optical Engineering. - 9781510636828 - 9781510636811
  • Conference paper (peer-reviewed)abstract
    • HIRES is the high-resolution spectrograph of the European Extremely Large Telescope at optical and near-infrared wavelengths. It consists of three fibre-fed spectrographs providing a wavelength coverage of 0.4-1.8 µm (goal 0.35-2.4 µm) at a spectral resolution of 100,000. The fibre-feeding allows HIRES to have several, interchangeable observing modes including a SCAO module and a small diffraction-limited IFU in the NIR. Therefore, it will be able to operate both in seeing- and diffraction-limited modes. Its modularity will ensure that HIRES can be placed entirely on the Nasmyth platform, if enough mass and volume is available, or part on the Nasmyth and part in the Coud`e room. ELT-HIRES has a wide range of science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars (PopIII), tests on the stability of Nature’s fundamental couplings, and the direct detection of the cosmic acceleration. The HIRES consortium is composed of more than 30 institutes from 14 countries, forming a team of more than 200 scientists and engineers.
  •  
3.
  • Marconi, A., et al. (author)
  • EELT-HIRES the high-resolution spectrograph for the E-ELT
  • 2016
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI. - : SPIE. - 9781510601963
  • Conference paper (peer-reviewed)abstract
    • The first generation of E-ELT instruments will include an optical infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Denmark, France, Germany, Italy, Poland, Portugal, Spain, Sweden, Switzerland and United Kingdom. In this paper we describe the science goals and the preliminary technical concept for EELT-HIRES which will be developed during the phase A, as well as its planned development and consortium organisation during the study.
  •  
4.
  • Shupe, M. D., et al. (author)
  • Overview of the MOSAiC expedition : Atmosphere
  • 2022
  • In: Elementa. - : University of California Press. - 2325-1026. ; 10:1
  • Journal article (peer-reviewed)abstract
    • With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore crosscutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic. 
  •  
5.
  • Cohen, J., et al. (author)
  • Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather
  • 2020
  • In: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 10, s. 20-29
  • Research review (peer-reviewed)abstract
    • The Arctic has warmed more than twice as fast as the global average since the late twentieth century, a phenomenon known as Arctic amplification (AA). Recently, there have been considerable advances in understanding the physical contributions to AA, and progress has been made in understanding the mechanisms that link it to midlatitude weather variability. Observational studies overwhelmingly support that AA is contributing to winter continental cooling. Although some model experiments support the observational evidence, most modelling results show little connection between AA and severe midlatitude weather or suggest the export of excess heating from the Arctic to lower latitudes. Divergent conclusions between model and observational studies, and even intramodel studies, continue to obfuscate a clear understanding of how AA is influencing midlatitude weather.
  •  
6.
  • Foltynowicz, Aleksandra, 1981-, et al. (author)
  • Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide
  • 2013
  • In: Applied physics. B, Lasers and optics (Print). - : Springer. - 0946-2171 .- 1432-0649. ; 110:2, s. 163-175
  • Journal article (peer-reviewed)abstract
    • We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high-power Yb:fiber laser, a high-finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.76 μm is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e. the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4×10-9 cm-1 Hz-1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9×10-11 cm-1 Hz-1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8 % of water the detection limit is 130 ppb. Spectra of acetylene, methane, and nitrous oxide at atmospheric pressure are also presented, and a line-shape model is developed to simulate the experimental data.
  •  
7.
  • Masłowski, P., et al. (author)
  • Cavity-enhanced direct frequency comb spectroscopy
  • 2014
  • In: Cavity-enhanced spectroscopy and sensing. - Berlin, Heidelberg : Springer. - 9783642400025 - 9783662510797 - 9783642400032 ; , s. 271-321
  • Book chapter (peer-reviewed)abstract
    • In less than fifteen years since the development of the first optical frequency comb (OFC), the device has revolutionized numerous research fields. In spectroscopy, the unique properties of the OFC spectrum enable simultaneous acquisition of broadband spectra while also providing high spectral resolution. Due to the regular structure of its spectrum, an OFC can be efficiently coupled to an optical enhancement cavity, resulting in vastly increased effective interaction length with the sample and absorption sensitivities as low as 1.3×10-11 cm-1 Hz-1/2 per spectral element. This technique, called cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), provides ultra-sensitive absorption measurements simultaneously over a wide spectral range and with acquisition times shorter than a second. This chapter introduces the main ideas behind CE-DFCS including properties of various comb sources, methods of coupling and locking the OFC to the enhancement cavity, and schemes for broadband, simultaneous detection. Examples of experimental implementations are given, and a survey of applications taking advantage of the rapid, massively parallel acquisition is presented. 
  •  
8.
  • Maslowski, P., et al. (author)
  • Optical frequency comb spectroscopy for gas metrology and trace gas detection
  • 2017
  • In: 2017 Conference on lasers and electro-optics (CLEO). - : IEEE. - 9781943580279 - 9781538620199
  • Conference paper (peer-reviewed)abstract
    • We report recent developments of comb-based broadband absorption spectroscopy. The comb-line resolving approaches and Fourier transform spectroscopy with sub-nominal resolution overcome the frequency resolution limits of conventional techniques. Advantages for various applications will be discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view