SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Massetti S.) "

Sökning: WFRF:(Massetti S.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Milillo, A., et al. (författare)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
2.
  • Orsini, S., et al. (författare)
  • Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission
  • 2022
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury’s southern inner magnetosphere is an unexplored region as it was not observed by earlier space missions. In October 2021, BepiColombo mission has passed through this region during its first Mercury flyby. Here, we describe the observations of SERENA ion sensors nearby and inside Mercury’s magnetosphere. An intermittent high-energy signal, possibly due to an interplanetary magnetic flux rope, has been observed downstream Mercury, together with low energy solar wind. Low energy ions, possibly due to satellite outgassing, were detected outside the magnetosphere. The dayside magnetopause and bow-shock crossing were much closer to the planet than expected, signature of a highly eroded magnetosphere. Different ion populations have been observed inside the magnetosphere, like low latitude boundary layer at magnetopause inbound and partial ring current at dawn close to the planet. These observations are important for understanding the weak magnetosphere behavior so close to the Sun, revealing details never reached before.
  •  
3.
  •  
4.
  • Orsini, S., et al. (författare)
  • Magnetosphere-exosphere-surface coupling at Mercury
  • 2007
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 132:04-feb, s. 551-573
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury's environment is a complex system, resulting from the interaction between the solar wind, magnetosphere, exosphere and surface. A comprehensive description of its characteristics requires a detailed study of these four elements. This paper illustrates and discusses the key processes that are implicated in the strong coupling of the Hermean magnetosphere with the other elements. The magnetosphere of Mercury, frequently called mini- magnetosphere, when compared to that of Earth, plays a significant role in controlling the planet source and loss processes, by means of both particle and field interactions. We review the status of our knowledge, and give possible interpretations of the still-limited data set presently available.
  •  
5.
  •  
6.
  • Massetti, Matteo, et al. (författare)
  • Fully direct written organic micro-thermoelectric generators embedded in a plastic foil
  • 2020
  • Ingår i: Nano Energy. - : ELSEVIER. - 2211-2855 .- 2211-3282. ; 75
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic materials have attracted great interest for thermoelectric applications due to their tuneable electronic properties, solution processability and earth-abundance, potentially enabling high-throughput realization of low-cost devices for low-power energy harvesting applications. So far, organic thermoelectricity has primarily focused on materials development, with less attention given to integrated generators. Yet, future applications will require the combination of efficient generators architectures and scalable manufacturing techniques to leverage the advantages of such promising materials. Here we report the realization of a monolithic organic micro-thermoelectric generator (mu-OTEG), using only direct writing methods, embedding the thermoelectric legs within a plastic substrate through a combination of direct laser writing and inkjet printing techniques. Employing PEDOT:PSS for the p-type legs and a doped fullerene derivative for the n-type ones, we demonstrate a mu-OTEG with power density of 30.5 nW/cm(2) under small thermal gradients, proving the concrete possibility of achieving power requirements of low-power, distributed sensing applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy