SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mather Tamsin A.) "

Sökning: WFRF:(Mather Tamsin A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Watt, Sebastian F. L., et al. (författare)
  • Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, similar to 42 degrees S), southern Chile
  • 2011
  • Ingår i: Quaternary International. - : Elsevier BV. - 1040-6182 .- 1873-4553. ; 246, s. 324-343
  • Tidskriftsartikel (refereegranskat)abstract
    • Late Glacial and Holocene soils and sediments in southern Chile contain an important record of explosive volcanic activity since the end of the last glaciation, and have considerable potential for the development of a regional tephrostratigraphical framework. This paper reports the discovery of several new tephra deposits from the Hualaihue region (similar to 42 degrees S) of southern Chile. Eruption sizes, constrained from field observations, and ages, constrained by 25 new radiocarbon dates, show that the volcanoes of the Hualaihue peninsula have had relatively few explosive, tephra-generating eruptions during the Holocene. An eruption of Apagado deposited similar to 1 km(3) of bedded basaltic scoria at similar to 2.6 calibrated (cal) ka BP, and Hornopiren produced a similar, but volumetrically-smaller unit at similar to 5.7 cal ka BR Activity at Yate over the same time period has been predominantly characterised by lava production, although small explosive eruptions, the products of which span a range of compositions, have also occurred, including one at similar to 0.9 cal ka BR The northern part of the regional tephra sequence is dominated by andesitic pumice fall deposits derived from Calbuco volcano. These include deposits from several eruptions during a 3500-year-long period at the start of the Holocene, as well as two large explosive eruptions in the past 2000 years. A distinctive rhyolitic tephra layer that is interbedded with the locally derived tephra sequence is the Cha1 unit, from Chaiten volcano, 108 km south of Hornopiren. This rhyolitic pumice deposit, dated at similar to 9.75 cal ka BP, is the largest volumetrically of those described here, with a volume of 3.5 km(3). This new tephrostratigraphy covers a region whose volcanic history was previously very little known, and contributes to a regional record of large explosive eruptions that now spans a 500 km-long segment of the southern Andean arc, between Calbuco and Hudson volcanoes.
  •  
2.
  • Ghail, Richard C., et al. (författare)
  • EnVision : taking the pulse of our twin planet
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 337-363
  • Tidskriftsartikel (refereegranskat)abstract
    • EnVision is an ambitious but low-risk response to ESA's call for a medium-size mission opportunity for a launch in 2022. Venus is the planet most similar to Earth in mass, bulk properties and orbital distance, but has evolved to become extremely hostile to life. EnVision's 5-year mission objectives are to determine the nature of and rate of change caused by geological and atmospheric processes, to distinguish between competing theories about its evolution and to help predict the habitability of extrasolar planets. Three instrument suites will address specific surface, atmosphere and ionosphere science goals. The Surface Science Suite consists of a 2.2 m(2) radar antenna with Interferometer, Radiometer and Altimeter operating modes, supported by a complementary IR surface emissivity mapper and an advanced accelerometer for orbit control and gravity mapping. This suite will determine topographic changes caused by volcanic, tectonic and atmospheric processes at rates as low as 1 mm a (-aEuro parts per thousand 1). The Atmosphere Science Suite consists of a Doppler LIDAR for cloud top altitude, wind speed and mesospheric structure mapping, complemented by IR and UV spectrometers and a spectrophotopolarimeter, all designed to map the dynamic features and compositions of the clouds and middle atmosphere to identify the effects of volcanic and solar processes. The Ionosphere Science Suite uses a double Langmiur probe and vector magnetometer to understand the behaviour and long-term evolution of the ionosphere and induced magnetosphere. The suite also includes an interplanetary particle analyser to determine the delivery rate of water and other components to the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy