SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matsson Elin M) "

Sökning: WFRF:(Matsson Elin M)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hesselson, Stephanie E, et al. (författare)
  • Genetic variation in the proximal promoter of ABC and SLC superfamilies : liver and kidney specific expression and promoter activity predict variation
  • 2009
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 4:9, s. e6942-
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane transporters play crucial roles in the cellular uptake and efflux of an array of small molecules including nutrients, environmental toxins, and many clinically used drugs. We hypothesized that common genetic variation in the proximal promoter regions of transporter genes contribute to observed variation in drug response. A total of 579 polymorphisms were identified in the proximal promoters (-250 to +50 bp) and flanking 5' sequence of 107 transporters in the ATP Binding Cassette (ABC) and Solute Carrier (SLC) superfamilies in 272 DNA samples from ethnically diverse populations. Many transporter promoters contained multiple common polymorphisms. Using a sliding window analysis, we observed that, on average, nucleotide diversity (pi) was lowest at approximately 300 bp upstream of the transcription start site, suggesting that this region may harbor important functional elements. The proximal promoters of transporters that were highly expressed in the liver had greater nucleotide diversity than those that were highly expressed in the kidney consistent with greater negative selective pressure on the promoters of kidney transporters. Twenty-one promoters were evaluated for activity using reporter assays. Greater nucleotide diversity was observed in promoters with strong activity compared to promoters with weak activity, suggesting that weak promoters are under more negative selective pressure than promoters with high activity. Collectively, these results suggest that the proximal promoter region of membrane transporters is rich in variation and that variants in these regions may play a role in interindividual variation in drug disposition and response.
  •  
2.
  • Bergman, Ebba, 1977-, et al. (författare)
  • Effect of a Single Gemfibrozil Dose on the Pharmacokinetics of Rosuvastatin in Bile and Plasma in Healthy Volunteers
  • 2010
  • Ingår i: Journal of clinical pharmacology. - : Wiley. - 0091-2700 .- 1552-4604. ; 50:9, s. 1039-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of a single intrajejunal dose of gemfibrozil (600 mg) on the plasma pharmacokinetics and biliary excretion of a single intrajejunal dose of rosuvastatin (20 mg) was investigated by using a multichannel catheter positioned in the distal duodenum/proximal jejunum in eight healthy volunteers. Bile and plasma samples were collected every 20 min for 200 min, with additional plasma samples being withdrawn for up to 48 hrs. Gemfibrozil did not affect the bioavailability of rosuvastatin, although it increased the apparent absorption phase during the initial 200 minutes (AUC0-200) by 1.56-fold (95%CI: 1.14-2.15). The interaction was less pronounced in this single dose study than in a previous report when gemfibrozil was administered repeatedly, nevertheless, the interaction coincided with the highest exposure to gemfibrozil. The plausible reason why the interaction in this investigation was only minor is the low exposure to gemfibrozil (and its metabolites), suggesting that the total plasma concentration of gemfibrozil needs to be above 20 µM in order to affect the disposition of rosuvastatin. This study demonstrates the value of monitoring the plasma pharmacokinetics of the inhibitor, and not only the drug under investigation, to improve the mechanistic interpretation.
  •  
3.
  • Matsson, Elin M., et al. (författare)
  • Combined in Vitro-in Vivo Approach To Assess the Hepatobiliary Disposition of a Novel Oral Thrombin Inhibitor
  • 2013
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 10:11, s. 4252-4262
  • Tidskriftsartikel (refereegranskat)abstract
    • Two clinical trials and a large set of in vitro transporter experiments were performed to investigate if the hepatobiliary disposition of the direct thrombin inhibitor prodrug AZD0837 is the mechanism for the drug-drug interaction with ketoconazole observed in a previous clinical study. In Study 1, [H-3]AZD0837 was administered to healthy male volunteers (n = 8) to quantify and identify the metabolites excreted in bile. Bile was sampled directly from the jejunum by duodenal aspiration via an oro-enteric tube. In Study 2, the effect of ketoconazole on the plasma and bile pharmacokinetics of AZD0837, the intermediate metabolite (AR-H069927), and the active form (AR-H067637) was investigated (n = 17). Co-administration with ketoconazole elevated the plasma exposure to AZD0837 and the active form approximately 2-fold compared to placebo, which may be explained by inhibited CYP3A4 metabolism and reduced biliary clearance, respectively. High concentrations of the active form was measured in bile with a bile-to-plasma AUC ratio of approximately 75, indicating involvement of transporter-mediated excretion of the compound. AZD0837 and its metabolites were further investigated as substrates of hepatic uptake and efflux transporters in vitro. Studies in MDCK-MDRI cell monolayers and P-glycoprotein (P-gp) expressing membrane vesicles identified AZD0837, the intermediate, and the active form as substrates of P-gp. The active form was also identified as a substrate of the multidrug and toxin extrusion 1 (MATE!) transporter and the organic cation transporter 1 (OCT1), in HEK cells transfected with the respective transporter. Ketoconazole was shown to inhibit all of these three transporters; in particular, inhibition of P-gp and MATE1 occurred in a clinically relevant concentration range. In conclusion, the hepatobiliary transport pathways of AZD0837 and its metabolites were identified in vitro and in vivo. Inhibition of the canalicular transporters P-gp and MATE1 may lead to enhanced plasma exposure to the active form, which could, at least in part, explain the clinical interaction with ketoconazole.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy