SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matsuura Mikako) "

Sökning: WFRF:(Matsuura Mikako)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alp, Dennis, et al. (författare)
  • The 30 Year Search for the Compact Object in SN 1987A
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 864:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite more than 30 years of searching, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1 x 10(-26) erg s(-1) cm(-2) Hz(-1)) at 213 GHz, 1 L-circle dot (6 x 10(-29) erg s(-1) cm(-2) Hz(-1)) in the optical if our line of sight is free of ejecta dust, and 10(36) erg s(-1) (2 x 10(-30) erg s(-1) cm(-2) Hz(-1) ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models. The allowed bolometric luminosity of the compact object is 22 L-circle dot if our line of sight is free of ejecta dust, or 138L(circle dot) if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star (NS) to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency 77 is limited to <10(-11) eta(-1) M-circle dot yr(-1), which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P) is B less than or similar to 10(14) P-2 G s(-2), which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, we infer that the compact object is a dust-obscured thermally emitting NS, which may appear as a region of higher-temperature ejecta dust emission.
  •  
2.
  • Arendt, Richard G., et al. (författare)
  • JWST NIRCam Observations of SN 1987A : Spitzer Comparison and Spectral Decomposition
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • JWST Near Infrared Camera (NIRCam) observations at 1.5–4.5 μm have provided broadband and narrowband imaging of the evolving remnant of SN 1987A with unparalleled sensitivity and spatial resolution. Comparing with previous marginally spatially resolved Spitzer Infrared Array Camera (IRAC) observations from 2004 to 2019 confirms that the emission arises from the circumstellar equatorial ring (ER), and the current brightness at 3.6 and 4.5 μm was accurately predicted by extrapolation of the declining brightness tracked by IRAC. Despite the regular light curve, the NIRCam observations clearly reveal that much of this emission is from a newly developing outer portion of the ER. Spots in the outer ER tend to lie at position angles in between the well-known ER hotspots. We show that the bulk of the emission in the field can be represented by five standard spectral energy distributions, each with a distinct origin and spatial distribution. This spectral decomposition provides a powerful technique for distinguishing overlapping emission from the circumstellar medium and the supernova ejecta, excited by the forward and reverse shocks, respectively.
  •  
3.
  • Cigan, Phil, et al. (författare)
  • High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high angular resolution (similar to 80 mas) ALMA continuum images of the SN.1987A system, together with CO J = 2 -> 1, J = 6 -> 5, and SiO J = 5 -> 4 to J = 7 -> 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H alpha images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 -> 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 -> 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 -> 1 and SiO J = 5 -> 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared-millimeter spectral energy distribution give ejecta dust temperatures of 18-23 K. We revise the ejecta dust mass to M-dust = 0.2-0.4 M-circle dot for carbon or silicate grains, or a maximum of <0.7 M-circle dot for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
  •  
4.
  • Mattsson, Lars, et al. (författare)
  • From flux to dust mass : Does the grain-temperature distribution matter for estimates of cold dust masses in supernova remnants?
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 449:4, s. 4079-4090
  • Tidskriftsartikel (refereegranskat)abstract
    • The amount of dust estimated from infrared to sub-millimetre (submm) observations strongly depends on assumptions of different grain sizes, compositions and optical properties. Here we use a simple model of thermal emission from cold silicate/carbon dust at a range of dust grain temperatures and fit the spectral energy distribution (SED) of the Crab nebula as a test. This can lower the derived dust mass for the Crab by similar to 50 per cent and 30-40 per cent for astronomical silicates and amorphous carbon grains compared to recently published values (0.25 M-circle dot -> 0.12 M-circle dot and 0.12 M-circle dot -> 0.072 M-circle dot, respectively), but the implied dustmass can also increase by as much as almost a factor of 6 (0.25 M-circle dot -> 1.14 M-circle dot and 0.12 M-circle dot -> 0.71 M-circle dot) depending on assumptions regarding the sizes/temperatures of the coldest grains. The latter values are clearly unrealistic due to the expected metal budget, though. Furthermore, we show by a simple numerical experiment that if a cold-dust component does have a grain-temperature distribution, it is almost unavoidable that a two-temperature fit will yield an incorrect dust mass estimate. But we conclude that grain temperatures is not a greater uncertainty than the often poorly constrained emissivities (i.e. material properties) of cosmic dust, although there is clearly a need for improved dust emission models. The greatest complication associated with deriving dust masses still arises in the uncertainty in the dust composition.
  •  
5.
  • Milisavljevic, Dan, et al. (författare)
  • A JWST Survey of the Supernova Remnant Cassiopeia A
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 965:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor's oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant's interior pockmarked with small (∼1'') round holes formed by ≲01 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼01 and 1' reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A's center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.
  •  
6.
  • Rosu, Sophie, et al. (författare)
  • Hubble Space Telescope Images of SN 1987A: Evolution of the Ejecta and the Equatorial Ring from 2009 to 2022
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics. - 0004-637X .- 1538-4357. ; 966:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) 1987A offers a unique opportunity to study how a spatially resolved SN evolves into a young SN remnant. We present and analyze Hubble Space Telescope (HST) imaging observations of SN 1987A obtained in 2022 and compare them with HST observations from 2009 to 2021. These observations allow us to follow the evolution of the equatorial ring (ER), the rapidly expanding ejecta, and emission from the center over a wide range in wavelength from 2000 to 11,000 Å. The ER has continued to fade since it reached its maximum ∼8200 days after the explosion. In contrast, the ejecta brightened until day ∼11,000 before their emission levelled off; the west side brightened more than the east side, which we attribute to the stronger X-ray emission by the ER on that side. The asymmetric ejecta expand homologously in all filters, which are dominated by various emission lines from hydrogen, calcium, and iron. From this overall similarity, we infer the ejecta are chemically well mixed on large scales. The exception is the diffuse morphology observed in the UV filters dominated by emission from the Mg ii resonance lines that get scattered before escaping. The 2022 observations do not show any sign of the compact object that was inferred from highly ionized emission near the remnant’s center observed with JWST. We determine an upper limit on the flux from a compact central source in the [O iii] HST image. The nondetection of this line indicates that the S and Ar lines observed with JWST originate from the O free inner Si-S-Ar-rich zone and/or that the observed [O iii] flux is strongly affected by dust scattering.
  •  
7.
  • Wesson, R., et al. (författare)
  • JWST observations of the Ring Nebula (NGC 6720): I. Imaging of the rings, globules, and arcs
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:2, s. 3392-3416
  • Tidskriftsartikel (refereegranskat)abstract
    • We present JWST images of the well-known planetary nebula NGC 6720 (the Ring Nebula), covering wavelengths from 1.6 to 25 m. The bright shell is strongly fragmented with some 20 000 dense globules, bright in H2, with a characteristic diameter of 0.2 arcsec and density nH ∼105-106 cm-3. The shell contains a narrow ring of polycyclic aromatic hydrocarbon (PAH) emission. H2 is found throughout the shell and also in the halo. H2 in the halo may be located on the swept-up walls of a biconal polar flow. The central cavity is filled with high-ionization gas and shows two linear structures which we suggest are the edges of a biconal flow, seen in projection against the cavity. The central star is located 2 arcsec from the emission centroid of the cavity and shell. Linear features ('spikes') extend outward from the ring, pointing away from the central star. Hydrodynamical simulations reproduce the clumping and possibly the spikes. Around 10 low-contrast, regularly spaced concentric arc-like features are present; they suggest orbital modulation by a low-mass companion with a period of about 280 yr. A previously known much wider companion is located at a projected separation of about 15 000 au; we show that it is an M2-M4 dwarf. NGC 6720 is therefore a triple star system. These features, including the multiplicity, are similar to those seen in the Southern Ring Nebula (NGC 3132) and may be a common aspect of such nebulae.
  •  
8.
  • Zanardo, Giovanna, et al. (författare)
  • SPECTRAL AND MORPHOLOGICAL ANALYSIS OF THE REMNANT OF SUPERNOVA 1987A WITH ALMA AND ATCA
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 796:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (lambda 3.2 mm to 450 mu m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S-nu proportional to nu(-0.73)) and the thermal component originating from dust grains at T similar to 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields -0.4 less than or similar to alpha less than or similar to -0.1 across the western regions, with alpha similar to 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy