SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matt T) "

Sökning: WFRF:(Matt T)

  • Resultat 1-10 av 111
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
5.
  •  
6.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
7.
  • Kramer, K. P., et al. (författare)
  • Band structure of overdoped cuprate superconductors: Density functional theory matching experiments
  • 2019
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 99:22
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive angle-resolved photoemission spectroscopy study of the band structure in singlelayer cuprates is presented with the aim of uncovering universal trends across different materials. Five different hole-and electron-overdoped cuprate superconductors (La1.59Eu0.2Sr0.21CuO4, La1.77Sr0.23CuO4, Bi1.74Pb0.38Sr1.88CuO6+delta, Tl2Ba2CuO6+delta, and Pr1.15La0.7Ce0.15CuO4) have been studied with special focus on the bands with a predominately d-orbital character. Using a light polarization analysis, the e(g) and t(2g) bands are identified across these materials. A clear correlation between the d(3z2-r2) band energy and the apical oxygen distance d(A) is demonstrated. Moreover, the compound dependence of the d(x2-y2) band bottom and the t(2g) band top is revealed. A direct comparison to density functional theory (DFT) calculations employing hybrid exchange-correlation functionals demonstrates excellent agreement. We thus conclude that the DFT methodology can be used to describe the global band structure of overdoped single-layer cuprates on both the hole-and electron-doped side.
  •  
8.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
9.
  • Turcot, Valerie, et al. (författare)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
10.
  • Gordon, I.E., et al. (författare)
  • The HITRAN2020 molecular spectroscopic database
  • 2022
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier. - 0022-4073 .- 1879-1352. ; 277
  • Tidskriftsartikel (refereegranskat)abstract
    • The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 111
Typ av publikation
tidskriftsartikel (98)
konferensbidrag (8)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (106)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Deloukas, Panos (17)
McCarthy, Mark I (15)
Wareham, Nicholas J. (14)
Hansen, Torben (13)
Salomaa, Veikko (12)
Laakso, Markku (12)
visa fler...
Pedersen, Oluf (12)
Langenberg, Claudia (12)
Boehnke, Michael (12)
Mohlke, Karen L (12)
Hattersley, Andrew T (12)
Hayward, Caroline (12)
Boeing, Heiner (11)
Franks, Paul W. (11)
Kuusisto, Johanna (11)
Thorsteinsdottir, Un ... (11)
Stefansson, Kari (11)
Barroso, Ines (11)
Luan, Jian'an (11)
Karpe, Fredrik (11)
Loos, Ruth J F (11)
Zeggini, Eleftheria (11)
Polasek, Ozren (11)
Rolandsson, Olov (10)
Chang, J (10)
Rudan, Igor (10)
Bork-Jensen, Jette (10)
Linneberg, Allan (10)
Grarup, Niels (10)
Ridker, Paul M. (10)
Chasman, Daniel I. (10)
Scott, Robert A (10)
Zhao, Wei (10)
Tuomilehto, Jaakko (10)
Thorleifsson, Gudmar (10)
Spector, Timothy D (10)
Metspalu, Andres (10)
Gudnason, Vilmundur (10)
Wilson, James G. (10)
Lind, Lars (9)
Hilton, Matt (9)
Brandslund, Ivan (9)
Jorgensen, Torben (9)
Samani, Nilesh J. (9)
Mahajan, Anubha (9)
Walker, Mark (9)
Palmer, Colin N. A. (9)
Harris, Tamara B (9)
Elliott, Paul (9)
Boerwinkle, Eric (9)
visa färre...
Lärosäte
Uppsala universitet (40)
Lunds universitet (25)
Karolinska Institutet (25)
Stockholms universitet (21)
Chalmers tekniska högskola (20)
Umeå universitet (18)
visa fler...
Kungliga Tekniska Högskolan (11)
Göteborgs universitet (7)
Handelshögskolan i Stockholm (5)
Linköpings universitet (3)
Luleå tekniska universitet (2)
Karlstads universitet (2)
Högskolan i Halmstad (1)
Örebro universitet (1)
Jönköping University (1)
Mittuniversitetet (1)
Högskolan i Skövde (1)
Linnéuniversitetet (1)
Naturhistoriska riksmuseet (1)
Blekinge Tekniska Högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (110)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (61)
Medicin och hälsovetenskap (28)
Teknik (9)
Samhällsvetenskap (9)
Humaniora (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy