SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mattarelli E.) "

Sökning: WFRF:(Mattarelli E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mattarelli, E., et al. (författare)
  • Combustion optimization of a marine di diesel engine
  • 2013
  • Ingår i: SAE Technical Papers. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International. - 0148-7191 .- 2688-3627. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced calibration strategies and innovative engine combustion technologies are required to meet the new limits on exhaust gas emissions enforced in the field of marine propulsion and on-board energy production. The goal of the paper is to optimize the control parameters of a 4.2 dm3 unit displacement marine DI Diesel engine, in order to enhance the efficiency of the combustion system and reduce engine out emissions. The investigation is carried out by means of experimental tests and CFD simulations. For a better control of the testing conditions, the experimental activity is performed on a single cylinder prototype, while the engine test bench is specifically designed to simulate different levels of boosting. The numerical investigations are carried out using a set of different CFD tools: GT-Power for the engine cycle analysis, STAR-CD for the study of the in-cylinder flow, and a customized version of the KIVA-3V code for combustion. All the models are calibrated through the above mentioned experimental campaign. Then, CFD simulations are applied to optimize the injection parameters and to explore the potential of the Miller combustion concept. It is found that the reduction of the charge temperature, ensuing the adoption of an early intake valve closing strategy, strongly affects combustion. With a proper valve actuation strategy, an increase of boost pressure and an optimized injection advance, a 40% reduction of NOx emissions can be obtained, along with a significant reduction of in-cylinder peak pressure, without penalizing fuel efficiency.
  •  
2.
  • Mattarelli, E., et al. (författare)
  • CFD-3D Analysis of a Light Duty Dual Fuel (Diesel/Natural Gas) Combustion Engine
  • 2014
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 45, s. 929-937
  • Konferensbidrag (refereegranskat)abstract
    • Nowadays, the most critical issues concerning internal combustion engines are the reduction of the pollutant emissions, in particular of CO2, and the replacement of fossil fuels with renewable sources. An interesting proposition for Diesel engines is the Dual Fuel (DF) combustion, consisting in the ignition of a premixed charge of gaseous fuel (typically natural gas) by means of a pilot injection of Diesel Fuel. Dual fuel combustion is a quite complex process to model, since it includes the injection of liquid fuel, superimposed with a premixed combustion. However, CFD simulation is fundamental to address a number of practical issues, such as the setting of the liquid injection parameters and of the gaseous fuel metering, as well as to get the maximum benefit from the DF technique. In this paper, a customized version of the KIVA-3V Computational Fluid Dynamic (CFD) code was adopted to analyze the combustion process of a 4-cylinder, 2.8 l, turbocharged HSDI Diesel engine, operating in both Diesel and DF (Diesel and Natural Gas) modes. Starting from a previously validated diesel combustion model, a natural gas combustion model was implemented and added to simulate the DF operations. Available engine test data were used for validation of the diesel-only operation regimes. Using the calibrated model, the influence of the premixed charge composition was investigated, along with the effect of the diesel injection advance angle, at a few characteristic operating conditions. An optimum setting was eventually found, allowing the DF engine to deliver the same brake power of the original Diesel unit, yielding the same maximum in-cylinder pressure.It was found that DF combustion is soot-less, yields a strong reduction of CO and CO2, but also an increase of NO.
  •  
3.
  • Qvirist, Linnea, 1987, et al. (författare)
  • Isolation, identification and characterization of yeasts from fermented goat milk of the Yaghnob Valley in Tajikistan
  • 2016
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 7:1690
  • Tidskriftsartikel (refereegranskat)abstract
    • The geographically isolated region of the Yaghnob Valley, Tajikistan, has allowed its inhabitants to maintain a unique culture and lifestyle. Their fermented goat milk constitutes one of the staple foods for the Yaghnob population, and is produced by backslopping, i.e., using the previous fermentation batch to inoculate the new one. This study addresses the yeast composition of the fermented milk, assessing genotypic, and phenotypic properties. The 52 isolates included in this study revealed small species diversity, belonging to Kluyveromyces marxianus, Pichia fermentans, Saccharomyces cerevisiae, and one Kazachstania unispora. The K. marxianus strains showed two different genotypes, one of which never described previously. The two genetically different groups also differed significantly in several phenotypic characteristics, such as tolerance toward high temperatures, low pH, and presence of acid. Microsatellite analysis of the S. cerevisiae strains from this study, compared to 350 previously described strains, attributed the Yaghnobi S. cerevisiae to two different ancestry origins, both distinct from the wine and beer strains, and similar to strains isolated from human and insects feces, suggesting a peculiar origin of these strains, and the existence of a gut reservoir for S. cerevisiae. Our work constitutes a foundation for strain selection for future applications as starter cultures in food fermentations. This work is the first ever on yeast diversity from fermented milk of the previously unexplored area of the Yaghnob Valley.
  •  
4.
  • Rinaldini, C.A., et al. (författare)
  • Potential of the Miller cycle on a HSDI diesel automotive engine
  • 2013
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 112, s. 102-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper explores, by means of CFD simulations, the potential of the Miller cycle, applied to High Speed Direct Injection (HSDI) Diesel engines, facing the challenge of emissions reduction enforced by the nearterm regulations, with particular reference to Euro VI. In fact, a valuable benefit of the Miller technique is the strong reduction of combustion temperature, thus the abating of NOx emissions, compared to a traditional cycle with the same values of AFR and EGR rate. The practical application of the Miller cycle yields a number of critical issues, which are generally addressed in the paper. However, the goal of the study is to assess the potential and the limits of this technique, more than develop a specific engine configuration. For the analysis, a 2.8 L 4-cylinder turbocharged engine produced by VM Motori was selected, carrying out a comprehensive experimental campaign, at both full and partial load. The experimental data allowed the authors to calibrate two types of numerical models, one for the whole engine analyses (0/1D), the other for the combustion process simulation (CFD-3D). The integrated use of these computational tools provides a reliable comparison between the base engine and the one modified according to the Miller cycle, in terms of both emissions and fuel consumption in the European Driving Cycle. It was found a reduction of NOx and Soot of 25% and 60%, respectively, and a worsening of fuel efficiency of 2%. The abating of NOx can be further enhanced, since it is demonstrated that the engine operated according to the Miller cycle can tolerate higher rates of EGR. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy