SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matte A) "

Sökning: WFRF:(Matte A)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lind, Petter, 1979-, et al. (författare)
  • Benefits and added value of convection-permitting climate modeling over Fenno-Scandinavia
  • 2020
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 55:7-8, s. 1893-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • Convection-permitting climate models have shown superior performance in simulating important aspects of the precipitation climate including extremes and also to give partly different climate change signals compared to coarser-scale models. Here, we present the first long-term (1998–2018) simulation with a regional convection-permitting climate model for Fenno-Scandinavia. We use the HARMONIE-Climate (HCLIM) model on two nested grids; one covering Europe at 12 km resolution (HCLIM12) using parameterized convection, and one covering Fenno-Scandinavia with 3 km resolution (HCLIM3) with explicit deep convection. HCLIM12 uses lateral boundaries from ERA-Interim reanalysis. Model results are evaluated against reanalysis and various observational data sets, some at high resolutions. HCLIM3 strongly improves the representation of precipitation compared to HCLIM12, most evident through reduced “drizzle” and increased occurrence of higher intensity events as well as improved timing and amplitude of the diurnal cycle. This is the case even though the model exhibits a cold bias in near-surface temperature, particularly for daily maximum temperatures in summer. Simulated winter precipitation is biased high, primarily over complex terrain. Considerable undercatchment in observations may partly explain the wet bias. Examining instead the relative occurrence of snowfall versus rain, which is sensitive to variance in topographic heights it is shown that HCLIM3 provides added value compared to HCLIM12 also for winter precipitation. These results, indicating clear benefits of convection-permitting models, are encouraging motivating further exploration of added value in this region, and provide a valuable basis for impact studies.
  •  
3.
  • Lind, Petter, 1979-, et al. (författare)
  • Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model
  • 2022
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 61:1-2, s. 519-541
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results from high-resolution climate change simulations that permit convection and resolve mesoscale orography at 3-km grid spacing over Fenno-Scandinavia using the HARMONIE-Climate (HCLIM) model. Two global climate models (GCMs) have been dynamically down-scaled for the RCP4.5 and RCP8.5 emission scenarios and for both near and far future periods in the 21st century. The warmer and moister climate conditions simulated in the GCMs lead to changes in precipitation characteristics. Higher precipitation amounts are simulated in fall, winter and spring, while in summer, precipitation increases in northern Fenno-Scandinavia and decreases in the southern parts of the domain. Both daily and sub-daily intense precipitation over Fenno-Scandinavia become more frequent at the expense of low-intensity events, with most pronounced shifts in summer. In the Scandinavian mountains, pronounced changes occur in the snow climate with a shift in precipitation falling as snow to rain, reduced snow cover and less days with a significant snow depth. HCLIM at 3-km grid spacing exhibits systematically different change responses in several aspects, e.g. a smaller shift from snow to rain in the western part of the Scandinavian mountains and a more consistent decrease in the urban heat island effect by the end of the 21st century. Most importantly, the high-resolution HCLIM shows a significantly stronger increase in summer hourly precipitation extremes compared to HCLIM at the intermediate 12-km grid spacing. In addition, an analysis of the statistical significance of precipitation changes indicates that simulated time periods of at least a couple of decades is recommended to achieve statistically robust results, a matter of important concern when running such high-resolution climate model experiments. The results presented here emphasizes the importance of using “convection-permitting” models to produce reliable climate change information over the Fenno-Scandinavian region.
  •  
4.
  •  
5.
  •  
6.
  • Nilsson, Emma A, et al. (författare)
  • Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels.
  • 2015
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 100:11, s. 1491-1501
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic variation may contribute to the development of complex metabolic diseases such as type 2 diabetes (T2D). Hepatic insulin resistance is a hallmark of T2D. However, it remains unknown if epigenetic alterations take place in the liver from diabetic subjects. Therefore, we investigated the genome-wide DNA methylation pattern in the liver from subjects with T2D and non-diabetic controls and related epigenetic alterations to gene expression and circulating folate levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy