SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mattsson Cecilia 1970) "

Sökning: WFRF:(Mattsson Cecilia 1970)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belkheiri, Tallal, 1985, et al. (författare)
  • Effect of pH on Kraft Lignin Depolymerisation in Subcritical Water
  • 2016
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 30:6, s. 4916-4924
  • Tidskriftsartikel (refereegranskat)abstract
    • Softwood kraft lignin was depolymerized using subcritical water (623 K and 25 MPa) in a continuous small pilot unit. ZrO2 and K2CO3 were used as catalysts, and phenol was used as capping agent to suppress repolymerization. The effect of pH was investigated by adding KOH in five steps to the feed. The yield of water-soluble organics increased with pH. The yield of bio-oil was also influenced by the pH and varied between 28 and 32 wt %. The char yield on the zirconia catalyst showed a minimum at pH 8.1. The yield of suspended solids was low at pH below 8.1 but increased at higher pH values. The oxygen content in the bio-oil was only 15 wt %, compared to about 26 wt % in the kraft lignin.
  •  
2.
  • Belkheiri, Tallal, 1985, et al. (författare)
  • Hydrothermal liquefaction of kraft lignin in sub-critical water: the influence of the sodium and potassium fraction
  • 2018
  • Ingår i: Biomass Conversion and Biorefinery. - : Springer Science and Business Media LLC. - 2190-6815 .- 2190-6823. ; 8:3, s. 585-595
  • Tidskriftsartikel (refereegranskat)abstract
    • As a part of developing a hydrothermal liquefaction (HTL) process to valorise lignin, it is important to consider integration possibilities with existing infrastructures in order to obtain an overall positive economic impact. One obvious example is to integrate the HTL process with the kraft pulp mill: transport and storage costs is reduced, the temperature levels on process streams can be matched (energy integration) and the recovery/use of alkali can be made efficient. In this study, softwood kraft lignin was depolymerised using sub-critical water (623 K; 25 MPa) in a continuous, small pilot unit with a flow rate of 2 kg/h. ZrO2, K2CO3/KOH and Na2CO3/NaOH were used as catalytic system, and phenol as the capping agent. The influence of the ratio between sodium and potassium in the feed on the yield and composition of the product stream was investigated. The results showed that bio-oil, water-soluble organics (WSO) and char yields were not remarkably influenced by shifting the catalytic system from potassium to sodium. Moreover, the yields of most phenolic compounds did not change significantly when the sodium fraction was varied in the feed. The amounts of suspended solids in the bio-oil produced showed, however, a diminishing trend, (decrease from 10.8 to 3.8%) when the sodium fraction was increased in the feed, whilst the opposite trend was observed for the heavy oil, which increased from 24.6 to 37.6%.
  •  
3.
  • Belkheiri, Tallal, 1985, et al. (författare)
  • Hydrothermal Liquefaction of Kraft Lignin in Subcritical Water: Influence of Phenol as Capping Agent
  • 2018
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 32:5, s. 5923-5932
  • Tidskriftsartikel (refereegranskat)abstract
    • The depolymerization of LignoBoost Kraft lignin in subcritical water, i.e. hydrothermal liquefaction (HTL), was investigated using ZrO 2 , K 2 CO 3 , and KOH as catalysts in a fixed-bed reactor with recirculation. Focus was placed on the effect exerted by the concentration of the phenol in suppressing repolymerization, which is responsible for forming char. Feeds with various concentrations of phenol (2-10%) were investigated, and the results showed that phenol partially prevents repolymerization even at low concentrations. The bio-oil yield of (61.0 ± 2.7) % was fairly stable when the concentration of phenol was varied. In the case of the formation of char on the catalyst, the char yield revealed a weakly decreasing trend (14.6-12.3%) when the amount of phenol in the feed was increased. The results also showed that the phenolic monomers that are alkylated, such as o-/p-cresols, increased significantly with increasing concentrations of phenol, while aromatic compounds, based on a guaiacol ring structure, showed decreasing trends.
  •  
4.
  • Burzio, Cecilia, 1991, et al. (författare)
  • Removal of organic micropollutants in the biological units of a Swedish wastewater treatment plant
  • 2021
  • Ingår i: IOP Conference Series: Materials Science and Engineering. - 1757-8981 .- 1757-899X. ; 1209
  • Konferensbidrag (refereegranskat)abstract
    • The present study investigates the presence and removal of target organic micropollutants in a large Swedish wastewater treatment plant designed for nutrient removal including activated sludge, trickling filters, nitrifying moving bed biofilm reactors (MBBRs) and post-denitrifying MBBRs. A total of 28 organic micropollutants were analysed, at concentrations ranging from few ng/L to µg/L, in the influent and effluent of the different biological reactors in two sampling campaigns. The observed micropollutant removal efficiencies of the wastewater treatment plant varied from insignificant (< 20%) to high (> 90%) between compounds. The activated sludge reactor, being the first in line, contributed to most of the removal from the water phase. Additional removal of a few compounds was observed in the biofilm units, but most of the persistent compounds remained stable through all biological treatments.
  •  
5.
  • Lyckeskog, Huyen, 1985, et al. (författare)
  • Storage Stability of Bio-oils Derived from the Catalytic Conversion of Softwood Kraft Lignin in Subcritical Water
  • 2016
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 30:4, s. 3097-3106
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability of lignin-derived bio-oil obtained from a continuous process [base (K2CO3)-catalyzed, using phenol as a capping agent] under subcritical conditions of water (25 MPa, 290-370 degrees C) was investigated. The lignin-derived bio-oil obtained was stored at ambient temperature for 2 years. Our results show that the base concentration in the feed solution affects the stability of this lignin-derived bio-oil during its long-term storage. It was found that, at low base concentrations (i.e., 0.4%-1.0%), the yields of all lignin-derived bio-oil fractions were relatively stable. At high base concentrations (i.e., 1.6%-2.2%), however, the yield of high-molecular-weight (high-Mw) structures increased and that of low-molecular-weight (low-Mw) structures decreased after storage. This indicated that the low-Mw materials had been polymerized to form high-Mw materials. In addition, it was found that the yield of gas chromatography-mass spectrometry (GC-MS)-identified compounds (excluding phenol) in this lignin-derived bio-oil decreased from 15% to 11%. This is probably due to the presence of solids in these lignin derived bio-oils, which promotes the catalytic polymerization reactions, suggesting that it is beneficial to remove the solids from this lignin-derived bio-oil in order to enhance its stability. Compared to the results obtained from bio-oil derived from biomass pyrolysis, our results show that bio-oil derived from the conversion of lignin in subcritical water has better chemical stability during long-term storage.
  •  
6.
  • Mattsson, Cecilia, 1970, et al. (författare)
  • About structural changes of lignin during kraft cooking and the kinetics of delignification
  • 2017
  • Ingår i: Holzforschung. - : Walter de Gruyter GmbH. - 0018-3830 .- 1437-434X. ; 71:7-8, s. 545-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Wood meal was submitted to kraft cooking in a small-scale flow-through reactor and the structural changes of lignin have been investigated. The rate determining steps in kraft cooking were in focus. Based on two-dimensional nuclear magnetic resonance (2D-NMR) measurements on lignin fractions extracted at different cooking times from the black liquor, it was observed that the main lignin reactions occur within 10-20 min and thus the kinetics of the chemical reaction cannot be the rate-determining step. On the other hand, the molecular weight (MW) of lignin is shifted towards larger fragments in the course of cooking time but the MW decreases with increasing ionic strength. Obviously, the kinetics of the delignification are strongly dependent on solubility and/or mass transport at the cell wall level. At chip size level, the mass transport of cooking chemicals into the wood chip may influence the overall kinetics in the initial part of the cooking. At longer cooking times the concentration of chemicals becomes sufficiently high in the wood chips, and the delignification is progressively governed by solubility and/or mass transport of lignin molecules occurring at the cell wall level.
  •  
7.
  • Mattsson, Cecilia, 1970 (författare)
  • Development of novel serotonin 5-HT6 and dopamine D2 receptor ligands and MAO A inhibitors - Synthesis, structure-activity relationships and pharmacological characterization
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • It is known since the 1950s that enhancement of the levels of the monoamines dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine (NE) in the brain will relieve the symptoms of major depression, and current therapies are still based on this mechanism. However, all available antidepressants today are still suffering from slow onset of therapeutic action, as well as adverse effects and lack of efficacy. Therefore, development of compounds with new mechanisms of action for treatment of depression is needed. One of the most important stages of the drug discovery process is the generation of lead compounds. Structure-activity relationships (SARs) are well integrated in modern drug discovery and have been used in the process of developing new leads. The tetrahydropyridine/piperidine indoles are known to affect multiple targets of the dopaminergic and serotonergic systems in the brain. This class of indoles can easily be modified and they possess the necessary properties for a lead, such as low molecular weight and high water solubility. This thesis is focused on further exploring the SAR around tetrahydropyridine/piperidine indoles by introduction of substituents and/or bioisosteric replacements of the indole core with the aim of developing novel compounds acting at the dopaminergic and serotonergic systems in the brain. By using in vivo and in vitro screening approaches, 5-HT type 6 receptor (5-HT6) agonists, DA type 2 receptor (DA D2) antagonists, 5-HT reuptake transporters (SERT) inhibitors, dual DA D2 antagonists/SERT inhibitors and finally reversible monoamine oxidase A (MAO A) inhibitors were identified after modifications of the chemical lead. In addition, the SAR of 6-substituted 3-(pyrrolidin-1-ylmethyl)chromen-2-ones (coumarin derivatives) were also investigated and were identified as selective and reversible MAO A inhibitors. Three compounds, i.e. the 5-HT6 agonist 81, the dual DA D2 antagonist/SERT inhibitor 158 and the MAO A inhibitor 134 have been identified to be of potential interest as novel antidepressants.
  •  
8.
  • Mattsson, Cecilia, 1970, et al. (författare)
  • Subcritical water de-polymerization of Kraft lignin: A process for future biorefineries. Structural characterization of bio-oil and solids
  • 2015
  • Ingår i: NWBC 2015 - 6th Nordic Wood Biorefinery Conference. ; , s. 112-119
  • Konferensbidrag (refereegranskat)abstract
    • A 2D-NMR analysis was carried out on fractionated bio-oil in order to investigate the result of the subcritical water base catalysed de-polymerization of LignoBoost Kraft lignin (350 °C, 25 MPa). It was confirmed that the signals from aliphatic lignin inter-unit linkages, i.e. ß-O-4’, ß-ß’, ß-1’ and ß-5’, had disappeared in all bio-oil fractions (light oil, heavy oil and suspended solids). This means that both aliphatic carbon-oxygen (C-O) and carbon-carbon (C-C) bonds in LignoBoost Kraft lignin have been broken and an effective de-polymerization has occurred. However, re-polymerization to higher molecular weight (Mw) fractions take place simultaneously. These higher Mw fractions (heavy oil and suspended solids) were found to be re-polymerized macromolecules (Mw distribution 5.4 kDa and 19.5 kDa resp.) with new structural networks based on guaiacol/disubstituted aromatic ethers and polyaromatic hydrocarbon structures tightly bound together. In this work it has been demonstrated that the subcritical water de-polymerization process of LignoBoost Kraft lignin does function; an effective de-oxygenation of LignoBoost Kraft lignin takes place, generating a bio-oil with a low content of atomic oxygen (15 wt.%) suitable for further processing at fossil-based oil refineries.
  •  
9.
  • Mattsson, Cecilia, 1970, et al. (författare)
  • Using 2D NMR to characterize the structure of the low and high molecular weight fractions of bio-oil obtained from LignoBoost (TM) kraft lignin depolymerized in subcritical water
  • 2016
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 95, s. 364-377
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work a multilevel analysis approach have been used for characterization of LignoBoostTM kraft lignin and bio-oil produced from LignoBoostTM kraft lignin using a process based on subcritical water (350 degrees C, 25 MPa). LignoBoostTM kraft lignin and the different fractions of the bio-oil (light oil, heavy oil and suspended solids) was characterized with high field NMR (18.8 T, 2D(13)C, H-1-HSQC NMR and C-13-NMR), GPC, GC-MS and elemental composition to improve understanding of the subcritical process. By using high resolution 2D HSQC NMR it was possible determine the chemical structures both on low and high molecular weight fractions of the bio-oil. It was confirmed that the signals from the aliphatic lignin inter-unit linkages, i.e. beta-O-4', beta-beta', beta-1' and beta-5', had disappeared from all of the bio-oil fractions studied. This means that both the aliphatic carbon-oxygen (C-O) and to some extent carbon-carbon (C-C) bonds in LignoBoostTM kraft lignin have been cleaved and an effective depolymerization has occurred. However, re-polymerization into higher molecular weight (Mw) fractions takes place simultaneously. These higher Mw fractions (heavy oil and suspended solids) were found to be re-polymerized macromolecules, with new structural networks based on guaiacol/disubstituted aromatic ethers and polyaromatic hydrocarbon structures bound tightly together. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy