SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mauersberger R.) "

Sökning: WFRF:(Mauersberger R.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Henkel, C., et al. (författare)
  • Carbon and oxygen isotope ratios in starburst galaxies: New data from NGC 253 and Mrk 231 and their implications
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon and oxygen isotope ratios are excellent measures of nuclear processing, but few such data have been taken toward extragalactic targets so far. Therefore, using the IRAM 30-m telescope, CN and CO isotopologues have been measured toward the nearby starburst galaxy NGC 253 and the prototypical ultraluminous infrared galaxy Mrk 231. Toward the center of NGC 253, the CN and (CN)-C-13 N = 1 -> 0 lines indicate no significant deviations from expected local thermodynamical equilibrium after accounting for moderate saturation effects (10 and 25%) in the two detected spectral components of the main species. Including calibration uncertainties, which dominate the error budget, the C-12/C-13 ratio becomes 40 +/- 10. This is larger than the ratio in the central molecular zone of the Galaxy, suggesting a higher infall rate of poorly processed gas toward the central region. Assuming that the ratio also holds for the CO emitting gas, this yields O-16/O-18 = 145 +/- 36 and O-16/O-17 = 1290 +/- 365 and a S-32/S-34 ratio close to the one measured for the local interstellar medium (2025). No indication of vibrationally excited CN is found in the lower frequency fine structure components of the N = 1 -> 0 and 2 -> 1 transitions at rms noise levels of 3 and 4 mK (15 and 20 mJy) in 8.5 km s-1 wide channels. Peak line intensity ratios between NGC 253 and Mrk 231 are similar to 100 for (CO)-C-12-O-16 and (CO)-C-12-O-18 J = 1 -> 0, while the ratio for (CO)-C-13-O-16 J = 1 -> 0 is similar to 250. This and similar (CO)-C-13 and (CO)-O-18 line intensities in the J = 1 -> 0 and 2 -> 1 transitions of Mrk 231 suggest C-12/C-13 similar to 100 and O-16/O-18 similar to 100, in agreement with values obtained for the less evolved ultraluminous merger Arp 220. Also, when accounting for other (scarcely available) extragalactic data, C-12/C-13 ratios appear to vary over a full order of magnitude, from >100 in ultraluminous high redshift galaxies to similar to 100 in more local such galaxies to similar to 40 in weaker starbursts that are not undergoing a large scale merger to 25 in the central molecular zone of the Milky Way. With C-12 being predominantly synthesized in massive stars, while C-13 is mostly ejected by longer lived lower mass stars at later times, this is qualitatively consistent with our results of decreasing carbon isotope ratios with time and rising metallicity. It is emphasized, however, that both infall of poorly processed material, initiating a nuclear starburst, and the ejecta from newly formed massive stars (in particular in the case of a top-heavy stellar initial mass function) can raise the carbon isotope ratio for a limited amount of time.
  •  
2.
  • Henkel, C., et al. (författare)
  • Molecular line emission in NGC 4945, imaged with ALMA
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • NGC 4945 is one of the nearest (D ≈ 3.8 Mpc; 1 00 ≈ 19 pc) starburst galaxies. To investigate the structure, dynamics, and composition of the dense nuclear gas of this galaxy, ALMA band 3 (λ ≈ 3−4 mm) observations were carried out with ≈2 00 resolution. Three HCN and two HC + isotopologues, CS, C 3 H 2 , SiO, HCO, and CH 3 C 2 H were measured. Spectral line imaging demonstrates the presence of a rotating nuclear disk of projected size 10 00 × 2 00 reaching out to a galactocentric radius of r ≈ 100 pc with position angle PA = 45 ◦ ± 2 ◦ , inclination i = 75 ◦ ± 2 ◦ and an unresolved bright central core of size <∼ 2 00 . The continuum source, representing mostly free-free radiation from star forming regions, is more compact than the nuclear disk by a linear factor of two but shows the same position angle and is centered 0 00 . 39 ± 0 00 . 14 northeast of the nuclear accretion disk defined by H 2 O maser emission. Near the systemic velocity but outside the nuclear disk, both HCN J = 1 → 0 and CS J = 2 → 1 delineate molecular arms of length >∼ 15 00 ( >∼ 285 pc) on opposite sides of the dynamical center. These are connected by a (deprojected) ≈ 0.6 kpc sized molecular bridge, likely a dense gaseous bar seen almost ends-on, shifting gas from the front and back side into the nuclear disk. Modeling this nuclear disk located farther inside (r <∼ 100 pc) with tilted rings provides a good fit by inferring a coplanar outflow reaching a characteristic deprojected velocity of ≈50 km s −1 . All our molecular lines, with the notable exception of CH 3 C 2 H, show significant absorption near the systemic velocity (≈571 km s −1 ), within the range ≈500-660 km s −1 . Apparently, only molecular transitions with low critical H 2 density (n crit<∼ 10 4 cm −3 ) do not show absorption. The velocity field of the nuclear disk, derived from CH 3 C 2 H, provides evidence for rigid rotation in the inner few arcseconds and a dynamical mass of M tot = (2.1 ± 0.2) × 10 8 M inside a galactocentric radius of 2 00 . 45 (≈45 pc), with a significantly flattened rotation curve farther out. Velocity integrated line intensity maps with most pronounced absorption show molecular peak positions up to ≈1 00 . 5 (≈30 pc) southwest of the continuum peak, presumably due to absorption, which appears to be most severe slightly northeast of the nuclear maser disk. A nitrogen isotope ratio of 14 N/ 15 N ≈ 200-450 is estimated. This range of values is much higher then previously reported on a tentative basis. Therefore, because 15 N is less abundant than expected, the question for strong 15 N enrichment by massive star ejecta in starbursts still remains to be settled.
  •  
3.
  • Humire, Pedro, et al. (författare)
  • Methanol masers in NGC 253 with ALCHEMI
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Methanol masers of Class I (collisionally pumped) and Class II (radiatively pumped) have been studied in great detail in our Galaxy in a variety of astrophysical environments such as shocks and star-forming regions and are they are helpful to analyze the properties of the dense interstellar medium. However, the study of methanol masers in external galaxies is still in its infancy. Aims. Our main goal is to search for methanol masers in the central molecular zone (CMZ; inner 500 pc) of the nearby starburst galaxy NGC253. Methods. Covering a frequency range between 84 and 373 GHz (λ = 3.6-0.8 mm) at high angular (1."6 ∼ 27 pc) and spectral (∼8-9 km s-1) resolution with ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory), we have probed dierent regions across the CMZ of NGC253. In order to look for methanol maser candidates, we employed the rotation diagram method and a set of radiative transfer models. Results.We detect for the first time masers above 84 GHz in NGC253, covering an ample portion of the J-1 (J-1)0-E line series (at 84, 132, 229, and 278 GHz) and the J0 (J-1)1 A series (at 95, 146, and 198 GHz). This confirms the presence of the Class I maser line at 84 GHz, which was already reported, but now being detected in more than one location. For the J-1 (J-1)0-E line series, we observe a lack of Class I maser candidates in the central star-forming disk. Conclusions. The physical conditions for maser excitation in the J-1 (J-1)0-E line series can be weak shocks and cloud-cloud collisions as suggested by shock tracers (SiO and HNCO) in bi-symmetric shock regions located in the outskirts of the CMZ. On the other hand, the presence of photodissociation regions due to a high star-formation rate would be needed to explain the lack of Class I masers in the very central regions.
  •  
4.
  • Ao, Y., et al. (författare)
  • The thermal state of molecular clouds in the Galactic center: evidence for non-photon-driven heating
  • 2014
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 9:S303, s. 89-91
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used the Atacama Pathfinder Experiment (APEX) 12 m telescope at 218 GHz to observe molecular clouds simultaneously in the J_KA,Kc=3_03→2_02,3_22→2_21,and 3_21→2_20 transitions of para-H2CO to determine kinetic temperatures of the dense gas in the central molecular zone of the Galaxy. Gas kinetic temperatures for individual molecular clouds range from 55 to 125 K or even higher. The molecular clouds at high temperatures may be heated by turbulent dissipation and/or cosmic-rays
  •  
5.
  • Ao, Y., et al. (författare)
  • The thermal state of molecular clouds in the Galactic center: evidence for non-photon-driven heating
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 550
  • Tidskriftsartikel (refereegranskat)abstract
    • We used the Atacama Pathfinder Experiment (APEX) 12 m telescope to observe the J(KAKc) = 3(03) -> 2(02), 3(22) -> 2(21), and 3(21) -> 2(20) transitions of para-H2CO at 218 GHz simultaneously to determine kinetic temperatures of the dense gas in the central molecular zone (CMZ) of our Galaxy. The map extends over approximately 40' x 8' (similar to 100 x 20 pc(2)) along the Galactic plane with a linear resolution of 1.2 pc. The strongest of the three lines, the H2CO (3(03) -> 2(02)) transition, is found to be widespread, and its emission shows a spatial distribution similar to ammonia. The relative abundance of para-H2CO is 0.5 - 1.2 x 10(-9), which is consistent with results from lower frequency H2CO absorption lines. Derived gas kinetic temperatures for individual molecular clouds range from 50K to values in excess of 100 K. While a systematic trend toward (decreasing) kinetic temperature versus (increasing) angular distance from the Galactic center (GC) is not found, the clouds with highest temperature (T-kin > 100 K) are all located near the nucleus. For the molecular gas outside the dense clouds, the average kinetic temperature is 65 +/- 10 K. The high temperatures of molecular clouds on large scales in the GC region may be driven by turbulent energy dissipation and / or cosmic-rays instead of photons. Such a non-photon-driven thermal state of the molecular gas provides an excellent template for the more distant vigorous starbursts found in ultraluminous infrared galaxies (ULIRGs).
  •  
6.
  • Mikolajewski, D. J., et al. (författare)
  • Relaxed predation results in reduced phenotypic integration in a suite of dragonflies
  • 2015
  • Ingår i: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 28:7, s. 1354-1363
  • Tidskriftsartikel (refereegranskat)abstract
    • Although changes in magnitude of single traits responding to selective agents have been studied intensively, little is known about selection shaping networks of traits and their patterns of covariation. However, this is central for our understanding of phenotypic evolution as traits are embedded in a multivariate environment with selection affecting a multitude of traits simultaneously rather than individually. Here, we investigate inter- and intraspecific patterns of trait integration (trait correlations) in the larval abdomen of dragonflies as a response to a change in predator selection. Species of the dragonfly genus Leucorrhinia underwent a larval habitat shift from predatory fish to predatory dragonfly-dominated lakes with an associated relaxation in selection pressure from fish predation. Our results indicate that the habitat-shift-induced relaxed selection pressure caused phenotypic integration of abdominal traits to be reduced. Intraspecific findings matched patterns comparing species from both habitats with higher abdominal integration in response to predatory fish. This higher integration is probably a result of faster burst swimming speed. The abdomen holds the necessary morphological machinery to successfully evade predatory fish via burst swimming. Hence, abdominal traits have to function in a tight coordinated manner, as maladaptive variation and consequently nonoptimal burst swimming would cause increased mortality. In predatory dragonfly-dominated lakes, no such strong link between burst swimming and mortality is present. Our findings highlight the importance of studying multivariate trait relationships as a response to selection for understanding patterns of phenotypic diversification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy