SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mayer Lucio) "

Sökning: WFRF:(Mayer Lucio)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
2.
  • Bortolas, Elisa, et al. (författare)
  • Global torques and stochasticity as the drivers of massive black hole pairing in the young Universe
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 3601-3615
  • Tidskriftsartikel (refereegranskat)abstract
    • The forthcoming Laser Interferometer Space Antenna (LISA) will probe the population of coalescing massive black hole (MBH) binaries up to the onset of structure formation. Here, we simulate the galactic-scale pairing of ∼106 M☉ MBHs in a typical, non-clumpy main-sequence galaxy embedded in a cosmological environment at z = 7-6. In order to increase our statistical sample, we adopt a strategy that allows us to follow the evolution of six secondary MBHs concomitantly. We find that the magnitude of the dynamical-friction-induced torques is significantly smaller than that of the large-scale, stochastic gravitational torques arising from the perturbed and morphologically evolving galactic disc, suggesting that the standard dynamical friction treatment is inadequate for realistic galaxies at high redshift. The dynamical evolution of MBHs is very stochastic, and a variation in the initial orbital phase can lead to a drastically different time-scale for the inspiral. Most remarkably, the development of a galactic bar in the host system either significantly accelerates the inspiral by dragging a secondary MBH into the centre, or ultimately hinders the orbital decay by scattering the MBH in the galaxy outskirts. The latter occurs more rarely, suggesting that galactic bars overall promote MBH inspiral and binary coalescence. The orbital decay time can be an order of magnitude shorter than what would be predicted relying on dynamical friction alone. The stochasticity and the important role of global torques have crucial implications for the rates of MBH coalescences in the early Universe: both have to be accounted for when making predictions for the upcoming LISA observatory.
  •  
3.
  • Dessauges-Zavadsky, Miroslava, et al. (författare)
  • Molecular gas cloud properties at z ≃ 1 revealed by the superb angular resolution achieved with ALMA and gravitational lensing
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:4, s. 6222-6238
  • Tidskriftsartikel (refereegranskat)abstract
    • Current observations favour that the massive ultraviolet-bright clumps with a median stellar mass of ∼107M⊙, ubiquitously observed in z ∼ 1–3 galaxies, are star-forming regions formed in situ in galaxies. It has been proposed that they result from gas fragmentation due to gravitational instability of gas-rich, turbulent, and high-redshift discs. We bring support to this scenario by reporting the new discovery of giant molecular clouds (GMCs) in the strongly lensed, clumpy, main-sequence galaxy, A521-sys1, at z = 1.043. Its CO(4–3) emission was mapped with the Atacama Large Millimetre/submillimetre Array (ALMA) at an angular resolution of 0.19 × 0.16 arcsec2, reading down to 30 pc, thanks to gravitational lensing. We identified 14 GMCs, most being virialized, with 105.9−107.9M⊙ masses and a median 800M⊙ pc−2 molecular gas mass surface density, that are, respectively, 100 and 10 times higher than for nearby GMCs. They are also characterized by 10 times higher supersonic turbulence with a median Mach number of 60. They end up to fall above the Larson scaling relations, similarly to the GMCs in another clumpy z ≃ 1 galaxy, the Cosmic Snake, although differences between the two sets of high-redshift GMCs exist. Altogether they support that GMCs form with properties that adjust to the ambient interstellar medium conditions prevalent in the host galaxy whatever its redshift. The detected A521-sys1 GMCs are massive enough to be the parent gas clouds of stellar clumps, with a relatively high star formation efficiency per free-fall time of ∼11 per cent.
  •  
4.
  • Janson, Markus, et al. (författare)
  • A wide-orbit giant planet in the high-mass b Centauri binary system
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7888
  • Tidskriftsartikel (refereegranskat)abstract
    • Planet formation occurs around a wide range of stellar masses and stellar system architectures1. An improved understanding of the formation process can be achieved by studying it across the full parameter space, particularly towards the extremes. Earlier studies of planets in close-in orbits around high-mass stars have revealed an increase in giant planet frequency with increasing stellar mass2 until a turnover point at 1.9 solar masses (M⊙), above which the frequency rapidly decreases3. This could potentially imply that planet formation is impeded around more massive stars, and that giant planets around stars exceeding 3 M⊙ may be rare or non-existent. However, the methods used to detect planets in small orbits are insensitive to planets in wide orbits. Here we demonstrate the existence of a planet at 560 times the Sun–Earth distance from the 6- to 10-M⊙ binary b Centauri through direct imaging. The planet-to-star mass ratio of 0.10–0.17% is similar to the Jupiter–Sun ratio, but the separation of the detected planet is about 100 times wider than that of Jupiter. Our results show that planets can reside in much more massive stellar systems than what would be expected from extrapolation of previous results. The planet is unlikely to have formed in situ through the conventional core accretion mechanism4, but might have formed elsewhere and arrived to its present location through dynamical interactions, or might have formed via gravitational instability.
  •  
5.
  • Kim, Ji Hoon, et al. (författare)
  • THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
  • 2016
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 833:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.
  •  
6.
  • Messa, Matteo, 1988-, et al. (författare)
  • Multiply lensed star forming clumps in the A521-sys1 galaxy at redshift 1
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:2, s. 2420-2443
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the population of star-forming clumps in A521-sys1, a z=1.04 system gravitationally lensed by the foreground (⁠z=0.25⁠) cluster Abell 0521. The galaxy presents one complete counter-image with a mean magnification of μ∼4 and a wide arc containing two partial images of A521-sys1 with magnifications reaching μ>20⁠, allowing the investigations of clumps down to scales of Reff<50 pc. We identify 18 unique clumps with a total of 45 multiple images. Intrinsic sizes and UV magnitudes reveal clumps with elevated surface brightnesses comparable to similar systems at redshifts z≳1.0⁠. Such clumps account for ∼40per cent of the galaxy UV luminosity implying a significant fraction of the recent star-formation activity is taking place there. Clump masses range from 106 to 109 M⊙ and sizes from tens to hundreds of parsec resulting in mass surface densities from 10 to 103 M⊙ pc−2 with a median of ∼102 M⊙ pc−2⁠. These properties suggest that we detect star formation taking place across a wide range of scale from cluster aggregates to giant star-forming complexes. We find ages of less than 100 Myr consistent with clumps being observed close to their natal region. The lack of galactocentric trends with mass, mass density, or age and the lack of old migrated clumps can be explained either by dissolution of clumps after few ∼100 Myr or by stellar evolution making them fall below the detectability limits of our data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy