SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mayor Jordan) "

Search: WFRF:(Mayor Jordan)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Birkebak, Joshua M, et al. (author)
  • A systematic, morphological and ecological overview of the Clavariaceae (Agaricales).
  • 2013
  • In: Mycologia. - : Informa UK Limited. - 0027-5514 .- 1557-2536. ; 105:4, s. 896-911
  • Journal article (peer-reviewed)abstract
    • The Clavariaceae is a diverse family of mushroom-forming fungi composed of species that produce simple clubs, coralloid, lamellate-stipitate, hydnoid and resupinate sporocarps. Here we present a systematic and ecological overview of the Clavariaceae based on phylogenetic analysis of sequences of the nuclear large subunit ribosomal RNA (nLSU), including nine from type collections. Forty-seven sequences from sporocarps of diverse taxa across the Clavariaceae were merged with 243 environmental sequences from GenBank and analyzed phylogenetically to determine major clades within the family. Four major clades or lineages were recovered: (i) Mucronella, (ii) Ramariopsis-Clavulinopsis, (iii) Hyphodontiella and (iv) Clavaria-Camarophyllopsis-Clavicorona. Clavaria is paraphyletic, within which the lamellate and pileate-stipitate genus Camarophyllopsis is derived and composed of two independent lineages. The monotypic genus Clavicorona also appears nested within Clavaria. The monophyly of Clavaria and Camarophyllopsis, however, cannot be statistically rejected. We compared differing classification schemes for the genera Ramariopsis and Clavulinopsis, most of which are inconsistent with the molecular phylogeny and are statistically rejected. Scytinopogon, a genus classified in the Clavariaceae by several authors, shares phylogenetic affinities with the Trechisporales. Overall 126 molecular operational taxonomic units can be recognized in the Clavariaceae, roughly half of which are known only from environmental sequences, an estimate that exceeds the known number of species in the family. Stable isotope ratios of carbon and nitrogen were measured from specimens representing most major phylogenetic lineages to predict trophic strategies. These results suggest that most non-lignicolous species feature a biotrophic mode of nutrition. Ancestral state reconstruction analysis highlights the taxonomic significance of at least nine morphological traits at various depths in the family tree.
  •  
2.
  • Hasselquist, Niles, et al. (author)
  • Convergence of soil nitrogen isotopes across global climate gradients
  • 2015
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Journal article (peer-reviewed)abstract
    • Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the N-15 : N-14 ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in N-15 than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8 degrees C, soil delta N-15 was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil delta N-15 showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
  •  
3.
  • Mayor, Jordan (author)
  • Comparing High-throughput Platforms for Sequencing the V4 Region of SSU-rDNA in Environmental Microbial Eukaryotic Diversity Surveys
  • 2015
  • In: Journal of Eukaryotic Microbiology. - : Wiley. - 1066-5234 .- 1550-7408. ; 62, s. 338-345
  • Journal article (peer-reviewed)abstract
    • High-throughput sequencing platforms are continuing to increase resulting read lengths, which is allowing for a deeper and more accurate depiction of environmental microbial diversity. With the nascent Reagent Kit v3, Illumina MiSeq now has the ability to sequence the eukaryotic hyper-variable V4 region of the SSU-rDNA locus with paired-end reads. Using DNA collected from soils with analyses of strictly- and nearly identical amplicons, here we ask how the new Illumina MiSeq data compares with what we can obtain with Roche/454 GS FLX with regard to quantity and quality, presence and absence, and abundance perspectives. We show that there is an easy qualitative transition from the Roche/454 to the Illumina MiSeq platforms. The ease of this transition is more nuanced quantitatively for low-abundant amplicons, although estimates of abundances are known to also vary within platforms.
  •  
4.
  • Mayor, Jordan, et al. (author)
  • Elevation alters ecosystem properties across temperate treelines globally
  • 2017
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 542:7639, s. 91-95
  • Journal article (peer-reviewed)abstract
    • Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries(1,2). Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics(3,4). Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming(5-7). One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra(8). However, whether there are globally consistent above-and belowground responses to these transitions remains an open question(4). To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.
  •  
5.
  • Mayor, Jordan (author)
  • Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests
  • 2017
  • In: Nature ecology & evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1
  • Journal article (peer-reviewed)abstract
    • High animal and plant richness in tropical rainforest communities has long intrigued naturalists. It is unknown if similar hyper-diversity patterns are reflected at the microbial scale with unicellular eukaryotes (protists). Here we show, using enwironmental metabarcoding of soil samples and a phylogeny-aware cleaning step, that protist communities in Neotropical rainforests are hyperdiverse and dominated by the parasitic Apicomplexa, which infect arthropods and other animals. These host-specific parasites potentially contribute to the high animal diversity in the forests by reducing population growth in a density-dependent manner. By contrast, too few operational taxonomic units (OTUs) of Oomycota were found to broadly drive high tropical tree diversity in a host-specific manner under the Janzen-Connell model. Extremely high OTU diversity and high heterogeneity between samples within the same forests suggest that protists, not arthropods, are the most diverse eukaryotes in tropical rainforests. Our data show that protists play a large role in tropical terrestrial ecosystems long viewed as being dominated by macroorganisms.
  •  
6.
  • Mayor, Jordan R., et al. (author)
  • Nitrogen Isotope Patterns in Alaskan Black Spruce Reflect Organic Nitrogen Sources and the Activity of Ectomycorrhizal Fungi
  • 2012
  • In: Ecosystems. - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 15:5, s. 819-831
  • Journal article (peer-reviewed)abstract
    • Global patterns in soil, plant, and fungal stable isotopes of N (delta N-15) show promise as integrated metrics of N cycling, particularly the activity of ectomycorrhizal (ECM) fungi. At small spatial scales, however, it remains difficult to differentiate the underlying causes of plant delta N-15 variability and this limits the application of such measurements to better understand N cycling. We conducted a landscape-scale analysis of delta N-15 values from 31 putatively N-limited monospecific black spruce (Picea mariana) stands in central Alaska to assess the two main hypothesized sources of plant delta N-15 variation: differing sources and ECM fractionation. We found roughly 20% of the variability in black spruce foliar N and delta N-15 values to be correlated with the concentration and delta N-15 values of soil NH4 (+) and dissolved organic N (DON) pools, respectively. However, N-15-based mixing models from 24 of the stands suggested that fractionation by ECM fungi obscures the N-15 signature of soil N pools. Models, regressions, and N abundance data all suggested that increasing dependence on soil DON to meet black spruce growth demands predicates increasing reliance on ECM-derived N and that black spruce, on average, received 53% of its N from ECM fungi. Future research should partition the delta N-15 values within the soil DON pool to determine how choice of soil delta N-15 values influence modeled ECM activity. The C balance of boreal forests is tightly linked to N cycling and delta N-15 values may be useful metrics of changes to these connections.
  •  
7.
  • Mayor, Jordan (author)
  • Species-specific responses of foliar nutrients to longterm nitrogen and phosphorus additions in a lowland tropical forest
  • 2014
  • In: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 102, s. 36-44
  • Journal article (peer-reviewed)abstract
    • The concentration, stoichiometry and resorption of nitrogen (N) and phosphorus (P) in plant leaves are often used as proxies of the availability of these growth-limiting nutrients, but the responses of these metrics to changes in nutrient availability remain largely untested for tropical forest trees. We evaluated changes in N and P concentrations, N/P ratios and resorption for four common tree species after 13years of factorial N and P additions in a lowland tropical forest in Panama. Chronic P addition increased foliar P concentrations, decreased P resorption proficiency and decreased N/P ratios in three locally common eudicot tree species (Alseis blackiana, Heisteria concinna, Tetragastris panamensis). The increase in foliar P involved similar proportional increases in organic and inorganic P in two species and a disproportionately large increase in inorganic P in A.blackiana. Nitrogen addition did not alter foliar N concentrations in any species, but did decrease N resorption proficiency in H.concinna. A fourth species, the palm Oenocarpus mapora, demonstrated remarkably static foliar nutrient concentrations, responding only with a marginal decrease in P resorption proficiency under N plus P co-addition.Synthesis. Collectively, these results suggest that adjustment of N/P ratios can be expected in eudicots exposed to elevated P, but foliar N appears to already be at optimal levels in these lowland rain forest tree species. The complexity of species-specific responses to altered nutrient availability highlights the difficulty in predicting future responses of tropical forest trees to a changing world.
  •  
8.
  • Mayor, Jordan (author)
  • Yeasts dominate soil fungal communities in three lowland Neotropical rainforests
  • 2017
  • In: Environmental Microbiology Reports. - : Wiley. - 1758-2229. ; 9, s. 668-675
  • Journal article (peer-reviewed)abstract
    • Forest soils typically harbour a vast diversity of fungi, but are usually dominated by filamentous (hyphae-forming) taxa. Compared to temperate and boreal forests, though, we have limited knowledge about the fungal diversity in tropical rainforest soils. Here we show, by environmental metabarcoding of soil samples collected in three Neotropical rainforests, that Yeasts dominate the fungal communities in terms of the number of sequencing reads and OTUs. These unicellular forms are commonly found in aquatic environments, and their hyperdiversity may be the result of frequent inundation combined with numerous aquatic microenvironments in these rainforests. Other fungi that are frequent in aquatic environments, such as the abundant Chytridiomycotina, were also detected. While there was low similarity in OTU composition within and between the three rainforests, the fungal communities in Central America were more similar to each other than the communities in South America, reflecting a general biogeographic pattern also seen in animals, plants and protists.
  •  
9.
  • Metcalfe, Daniel B., et al. (author)
  • Patchy field sampling biases understanding of climate change impacts across the Arctic
  • 2018
  • In: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:9, s. 1443-1448
  • Journal article (peer-reviewed)abstract
    • Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.
  •  
10.
  • Tedersoo, Leho, et al. (author)
  • Global diversity and geography of soil fungi
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6213, s. artikel nr 1256688-
  • Journal article (peer-reviewed)abstract
    • Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view