SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mazeau Karim) "

Sökning: WFRF:(Mazeau Karim)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Bergenstråhle, Malin, 1977-, et al. (författare)
  • Dynamics of Cellulose-Water Interfaces : NMR Spin-Lattice Relaxation Times Calculated from Atomistic Computer Simulations
  • 2008
  • Ingår i: Journal of Physical Chemistry B. - Washington : ACS Publications. - 1520-6106 .- 1520-5207. ; 112:9, s. 2590-2595
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy has often been used to study cellulose structure, but some features of the cellulose NMR spectrum are not yet fully understood. One such feature is a doublet around 84 ppm, a signal that has been proposed to originate from C4 atoms at cellulose fibril surfaces. The two peaks yield different T1, differing by approximately a factor of 2 at 75 MHz. In this study, we calculate T1 from C4-H4 vector dynamics obtained from molecular dynamics computer simulations of cellulose Iβ-water interfacial systems. Calculated and experimentally obtained T1 values for C4 atoms in surface chains fell within the same order of magnitude, 3-20 s. This means that the applied force field reproduces relevant surface dynamics for the cellulose-water interface sufficiently well. Furthermore, a difference in T1 of about a factor of 2 in the range of Larmor frequencies 25-150 MHz was found for C4 atoms in chains located on top of two different crystallographic planes, namely, (110) and (10). A previously proposed explanation that the C4 peak doublet could derive from surfaces parallel to different crystallographic planes is herewith strengthened by computationally obtained evidence. Another suggested basis for this difference is that the doublet originates from C4 atoms located in surface anhydro-glucose units with hydroxymethyl groups pointing either inward or outward. This was also tested within this study but was found to yield no difference in calculated T1.
  •  
5.
  • Bergenstråhle, Malin, 1977-, et al. (författare)
  • Molecular modeling of interfaces between cellulose crystals and surrounding molecules : Effects of caprolactone surface grafting
  • 2008
  • Ingår i: European Polymer Journal. - Amsterdam : Elsevier. - 0014-3057 .- 1873-1945. ; 44:11, s. 3662-3669
  • Tidskriftsartikel (refereegranskat)abstract
    • A technical problem in cellulosic nanocomposite materials is the weak interaction between hydrophilic cellulose and hydrophobic polymer matrices. One approach to solve this difficulty is to chemically graft monomers of the matrix polymer onto the cellulose surface. An important question is to understand the effect such surface modification has on the interfacial properties. Semi-empirical approaches to estimate work of adhesion based on surface energies do not provide information on specific molecular interactions. Details about these interactions were obtained using molecular dynamics (MD) simulation. Cellulose interfaces with water and caprolactone medium were modeled with different amounts of grafted caprolactone. The modification lead to an increased work of adhesion between the surface and its surrounding medium. Furthermore, the MD simulations showed that the interaction between cellulose, both modified and non-modified, and surrounding medium is dominated by Coulomb interactions, predominantly as hydrogen bonds.
  •  
6.
  • Bergenstråhle, Malin, 1977-, et al. (författare)
  • Thermal Response in Crystalline Iβ Cellulose : A Molecular Dynamics Study
  • 2007
  • Ingår i: Journal of Physical Chemistry B. - Washington : ACS Publications. - 1520-6106 .- 1520-5207. ; 111:30, s. 9138-9145
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of temperature on structure and properties of the cellulose Iβ crystal was studied by molecular dynamics simulations with the GROMOS 45a4 force-field. At 300 K, the modeled crystal agreed reasonably with several sets of experimental data, including crystal density, corresponding packing and crystal unit cell dimensions, chain conformation parameters, hydrogen bonds, Young's modulus, and thermal expansion coefficient at room temperature. At high-temperature (500 K), the cellulose chains remained in sheets, despite differences in the fine details compared to the room-temperature structure. The density decreased while the a and b cell parameters expanded by 7.4% and 6%, respectively, and the c parameter (chain axis) slightly contracted by 0.5%. Cell angles α and β divided into two populations. The hydroxymethyl groups mainly adopted the gt orientation, and the hydrogen-bonding pattern thereby changed. One intrachain hydrogen bond, O2'H2'···O6, disappeared and consequently the Young's modulus decreased by 25%. A transition pathway between the low- and high-temperature structures has been proposed, with an initial step being an increased intersheet separation, which allowed every second cellulose chain to rotate around its helix axis by about 30°. Second, all hydroxymethyl groups changed their orientations, from tg to gg (rotated chains) and from tg to gt (non-rotated chains). When temperature was further increased, the rotated chains returned to their original orientation and their hydroxymethyl groups again changed their conformation, from gg to gt. A transition temperature of about 450 K was suggested; however, the transition seems to be more gradual than sudden. The simulated data on temperature-induced changes in crystal unit cell dimensions and the hydrogen-bonding pattern also compared well with experimental results.
  •  
7.
  • Chen, Pan, et al. (författare)
  • Alternative hydrogen bond models of cellulose II and IIII based on molecular force-fields and density functional theory
  • 2015
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 22:3, s. 1485-1493
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative hydrogen-bond structures were found for cellulose II and IIII based on molecular dynamics simulations using four force fields and energy optimization based on density functional theory. All the modeling results were in support to the new hydrogen-bonding network. The revised structures of cellulose II and IIII differ with the fiber diffraction models mainly in the orientation of two hydroxyl groups, namely, OH2 and OH6 forming hydrogen-bond chains perpendicular to the cellulose molecule. In the alternative structures, the sense of hydrogen bond is inversed but little difference can be seen in hydrogen bond geometries. The preference of these alternative hydrogen bond structures comes from the local stabilization of hydroxyl groups with respect to the beta carbon. On the other hand when simulated fiber diffraction patterns were compared with experimental ones, the current structure of cellulose II with higher energy and the alternative structure of cellulose IIII with lower energy were in better agreement.
  •  
8.
  •  
9.
  • Chen, Pan, et al. (författare)
  • I alpha to I beta mechano-conversion and amorphization in native cellulose simulated by crystal bending
  • 2018
  • Ingår i: Cellulose. - : Springer. - 0969-0239 .- 1572-882X. ; 25:8, s. 4345-4355
  • Tidskriftsartikel (refereegranskat)abstract
    • The bending of rod-like native cellulose crystals with degree of polymerization 40 and 160 using molecular dynamics simulations resulted in a deformation-induced local amorphization at the kinking point and allomorphic interconversion between cellulose I alpha and I beta in the unbent segments. The transformation mechanism involves a longitudinal chain slippage of the hydrogen-bonded sheets by the length of one anhydroglucose residue ( 0.5 nm), which alters the chain stacking from the monotonic (I alpha) form to the alternating I beta one or vice versa. This mechanical deformation converts the I alpha form progressively to the I beta form, as has been experimentally observed for ultrasonication of microfibrils. I beta is also able to partially convert to I alpha-like organization but this conversion is only transitory. The qualitative agreement between the behavior of ultrasonicated microfibrils and in silico observed I alpha -> I beta conversion suggests that shear deformation and chain slippage under bending deformation is a general process when cellulose fibrils experience lateral mechanical stress.
  •  
10.
  • Chen, Pan, et al. (författare)
  • Translational Entropy and Dispersion Energy Jointly Drive the Adsorption of Urea to Cellulose
  • 2017
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 121:10, s. 2244-2251
  • Tidskriftsartikel (refereegranskat)abstract
    • The adsorption of urea on cellulose at room temperature has been studied using adsorption isotherm experiments and molecular dynamics (MD) simulations. The immersion of cotton cellulose into bulk urea solutions with concentrations between 0.01 and 0.30 g/mL led to a decrease in urea concentration in all solutions, allowing the adsorption of urea on the cellulose surface to be measured quantitatively. MD simulations suggest that urea molecules form sorption layers on both hydrophobic and hydrophilic surfaces. Although electrostatic interactions accounted for the majority of the calculated interaction energy between urea and cellulose, dispersion interactions were revealed to be the key driving force for the accumulation of urea around cellulose. The preferred orientation of urea and water molecules in the first solvation shell varied depending on the nature of the cellulose surface, but urea molecules were systematically oriented parallel to the hydrophobic plane of cellulose. The translational entropies of urea and water molecules, calculated from the velocity spectrum of the trajectory, are lower near the cellulose surface than in bulk. As urea molecules adsorb on cellulose and expel surface water into the bulk, the increase in the translational entropy of the water compensated for the decrease in the entropy of urea, resulting in a total entropy gain of the solvent system. Therefore, the cellulose urea dispersion energy and the translational entropy gain of water are the main factors that drive the adsorption of urea on cellulose.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy