SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McClenaghan C) "

Sökning: WFRF:(McClenaghan C)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
3.
  •  
4.
  •  
5.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
6.
  • McClenaghan, C, et al. (författare)
  • Sulfonylurea-Insensitive Permanent Neonatal Diabetes Caused by a Severe Gain-of-Function Tyr330His Substitution in Kir6.2
  • 2022
  • Ingår i: Hormone research in paediatrics. - : S. Karger AG. - 1663-2826 .- 1663-2818. ; 95:3, s. 215-223
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background/Aims:</i></b> Mutations in <i>KCNJ11</i>, the gene encoding the Kir6.2 subunit of pancreatic and neuronal K<sub>ATP</sub> channels, are associated with a spectrum of neonatal diabetes diseases. <b><i>Methods:</i></b> Variant screening was used to identify the cause of neonatal diabetes, and continuous glucose monitoring was used to assess effectiveness of sulfonylurea treatment. Electrophysiological analysis of variant K<sub>ATP</sub> channel function was used to determine molecular basis. <b><i>Results:</i></b> We identified a previously uncharacterized <i>KCNJ11</i> mutation, c.988T&#x3e;C [p.Tyr330His], in an Italian child diagnosed with sulfonylurea-resistant permanent neonatal diabetes and developmental delay (intermediate DEND). Functional analysis of recombinant K<sub>ATP</sub> channels reveals that this mutation causes a drastic gain-of-function, due to a reduction in ATP inhibition. Further, we demonstrate that the Tyr330His substitution causes a significant decrease in sensitivity to the sulfonylurea, glibenclamide. <b><i>Conclusions:</i></b> In this subject, the <i>KCNJ11</i> (c.988T&#x3e;C) mutation provoked neonatal diabetes, with mild developmental delay, which was insensitive to correction by sulfonylurea therapy. This is explained by the molecular loss of sulfonylurea sensitivity conferred by the Tyr330His substitution and highlights the need for molecular analysis of such mutations.
  •  
7.
  • Khan, D, et al. (författare)
  • Short-term CFTR inhibition reduces islet area in C57BL/6 mice
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 11244-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality. Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed. We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice. CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172. Animals had a 7-day washout period before measures of hormone concentration or islet function were performed. Short-term CFTR inhibition increased blood glucose concentrations over the course of the study. However, glucose tolerance remained normal without insulin resistance. CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number. Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals. Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion. CFTR inhibition has a rapid impact on islet area and insulin concentrations. However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.
  •  
8.
  •  
9.
  • Naehrlich, L., et al. (författare)
  • Incidence of SARS-CoV-2 in people with cystic fibrosis in Europe between February and June 2020
  • 2021
  • Ingår i: Journal of Cystic Fibrosis. - : Elsevier BV. - 1569-1993. ; 20:4, s. 566-577
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Viral infections can cause significant morbidity in cystic fibrosis (CF). The current Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic could therefore have a serious impact on the health of people with CF (pwCF). Methods: We used the 38-country European Cystic Fibrosis Society Patient Registry (ECFSPR) to collect case data about pwCF and SARS-CoV-2 infection. Results: Up to 30 June 2020, 16 countries reported 130 SARS-CoV-2 cases in people with CF, yielding an incidence of 2.70/10 0 0 pwCF. Incidence was higher in lung-transplanted patients (n = 23) versus non transplanted patients (n = 107) (8.43 versus 2.36 cases/10 0 0). Incidence was higher in pwCF versus the age-matched general population in the age groups < 15, 15-24, and 25-49 years (p < 0.001), with similar trends for pwCF with and without lung transplant. Compared to the general population, pwCF (regardless of transplantation status) had significantly higher rates of admission to hospital for all age groups with available data, and higher rates of intensive care, although not statistically significant. Most pwCF recovered (96.2%), however 5 died, of whom 3 were lung transplant recipients. The case fatality rate for pwCF (3.85%, 95% CI: 1.26-8.75) was non-significantly lower than that of the general population (7.46%; p = 0.133). Conclusions: SARS-CoV-2 infection can result in severe illness and death for pwCF, even for younger patients and especially for lung transplant recipients. PwCF should continue to shield from infection and should be prioritized for vaccination. (c) 2021 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy