SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McElwain J.C.) "

Sökning: WFRF:(McElwain J.C.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, E., et al. (författare)
  • DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 802:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0 ''.2 to 1 ''.5 (11-81 AU) and the PI image shows a clear axisymmetric depression in PI at similar to 0 ''.4 (similar to 20 AU) from the central star, similar to the similar to 80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0 ''.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structure may exist at similar to 20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
  •  
2.
  • Garcia, E. Victor, et al. (författare)
  • SCExAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high signal-to-noise ratio, precise Y JH photometry and Y band (0.957-1.120 mu m) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5(-0.5)(+1.0), where the blue edge of our Y band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B has an effective temperature of 3000-3100 K, a surface gravity of log g - 4-4.5, a radius of. 1.55 +/- 0.10 R-J, and a luminosity of log L/L circle dot - 2.76 +/- 0.05. Neither the primary's Hertzspring-Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a subsolar metallicity. Interpretation of the HD 1160 B spectroscopy depends on which stellar system components are used to estimate the age. Considering HD 1160 A, B and C jointly, we derive an age of 80-125 Myr, implying that HD 1160 B straddles the hydrogen-burning limit (70-90 M-J) If we consider HD 1160 A alone, younger ages (20-125 Myr) and a brown dwarf-like mass (35-90 M-J) are possible. Interferometric measurements of the primary, a precise Gaia parallax, and moderate-resolution spectroscopy can better constrain the system's age and how HD 1160 B fits within the context of (sub) stellar evolution.
  •  
3.
  • Helminiak, K. G., et al. (författare)
  • SEEDS DIRECT IMAGING OF THE RV-DETECTED COMPANION TO V450 ANDROMEDAE, AND CHARACTERIZATION OF THE SYSTEM
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 832:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the direct imaging detection of a low-mass companion to a young, moderately active star V450. And, that was previously identified with the radial velocity (RV) method. The companion was found in high-contrast images obtained with the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics system. From the public ELODIE and SOPHIE archives we extracted available high-resolution spectra and RV measurements, along with RVs from the Lick planet search program. We combined our multi-epoch astrometry with these archival, partially unpublished RVs, and found that the companion is a low-mass star, not a brown dwarf, as previously suggested. We found the best-fitting dynamical masses to be m(1) = 1.141(-0.091)(+0.037)and m(2) = 0.279(-0.020)(+0.023) M-circle dot. We also performed spectral analysis of the SOPHIE spectra with the iSpec code. Hipparcos time-series photometry shows a periodicity of P = 5.743 day, which is also seen in the SOPHIE spectra as an RV modulation of the star A. We interpret it as being caused by spots on the stellar surface, and the star to be rotating with the given period. From the rotation and level of activity, we found that the system is 380(-100)(+220) Myr old, consistent with an isochrone analysis (220(-90)(+2120) Myr). This work may serve as a test case for future studies of low-mass stars, brown dwarfs, and exoplanets by combination of RV and direct imaging data.
  •  
4.
  • McElwain, J.C., et al. (författare)
  • Palaeoecology, ploidy, palaeoatmospheres and developmental biology: A review of fossil stomata
  • 2017
  • Ingår i: Plant Physiology. - Dartmouth : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 174, s. 650-664
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of stomata is a diagnostic trait of all living and extinct land plants with the exception of liverworts. They are preserved widely in the fossil record from anatomically pristine stomatal complexes on permineralized and charcoalified stems of the earliest land plants dating back >400 million years to isolated guard cell pairs in Quaternary aged palynological samples. Detailed study of fossil stomatal complexes has been used to track the evolution of genome size and to reconstruct atmospheric composition, to circumscribe new species to science and to bring ancient landscapes to life by providing both habitat information and insights on fossil plant ecophysiological function and life-form. This review explores how fossil stomata can be used to advance our understanding of plant, environment and atmospheric evolution over the Phanerozoic. We compare the utility of qualitative (e.g. presence/absence of stomatal crypts) versus quantitative stomatal traits (e.g. amphistomaty ratio) in palaeoecological reconstructions. A case study on Triassic-Jurassic Ginkgoales is provided to highlight the methodological difficulty of teasing apart the effect of genome size, ploidy and environment on guard cell size evolution across mass extinction boundaries. We critique both empirical and mechanistic stomatal-based models for palaeo-CO2 reconstruction and highlight some key limitations and advantages of both approaches. Finally we question if different stomatal developmental pathways have ecophysiological consequence for leaf gas exchange and ultimately the application of different stomatal-based CO2 proxy methods. We conclude that most studies currently only capture a fraction of the potential invaluable information that can be gleaned from fossilized stomata and highlight future approaches to their study that better integrate across the disciplinary boundaries of palaeobotany, developmental biology, palaeoecology and plant physiology.
  •  
5.
  • Mizuki, T., et al. (författare)
  • Orbital Characterization of GJ1108A System, and Comparison of Dynamical Mass with Model-derived Mass for Resolved Binaries
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 865:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an orbital characterization of GJ1108Aab that is a low-mass binary system in the pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e = 0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm that the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (M-dynamical,M-GJ1108Aa= 0.72 +/- 0.04 M-circle dot and M-dynamical,M-GJ1108Ab = 0.30 +/- 0.03 M-circle dot) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider that the discrepancy in mass comparison can be attributed to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in the evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.
  •  
6.
  • Purcell, C., et al. (författare)
  • Increasing stomatal conductance in response to rising atmospheric CO2
  • 2018
  • Ingår i: Annals of Botany. - : Oxford University Press (OUP). - 0305-7364 .- 1095-8290. ; 121:6, s. 1137-1149
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims Studies have indicated that plant stomatal conductance (g(s)) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, g(s) increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, g(s) can increase in response to elevated CO2. Methods Using (1) an extensive, up-to-date synthesis of g(s) responses in free air CO2 enrichment (FACE) experiments, (2) in situ measurements across four biomes showing dynamic g(s) responses to a CO2 rise of similar to 50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that g(s) can in some cases increase in response to increasing atmospheric CO2. Key Results Field observations are corroborated by an extensive synthesis of g(s) responses in FACE experiments showing that 11.8 % of g(s) responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r(2) = 0.607) using a stomatal optimization model applied to the field g(s) dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing g(s) under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive g(s) responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). Conclusions The results contradict the over-simplistic notion that global vegetation always responds with decreasing g(s) to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.
  •  
7.
  • Soh, W.K., et al. (författare)
  • A new paleo-leaf economic proxy reveals a shift in ecosystem function in response to global warming at the onset of the Triassic period
  • 2017
  • Ingår i: Nature Plants. - London : Nature Publishing Group. - 2055-0278. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO2-induced global warming event on the ecological functioning of dominant plant communities. We use leaf mass per area (LMA), a widely used trait in modern plant ecology, to infer the palaeoecological strategy of fossil plant taxa. We show that palaeo-LMA can be inferred from fossil leaf cuticles based on a tight relationship between LMA and cuticle thickness observed among extant gymnosperms. Application of this new palaeo-LMA proxy to fossil gymnosperms from East Greenland reveals significant shifts in the dominant ecological strategies of vegetation found across the Triassic–Jurassic transition. Late Triassic forests, dominated by low-LMA taxa with inferred high transpiration rates and short leaf lifespans, were replaced in the Early Jurassic by forests dominated by high-LMA taxa that were likely to have slower metabolic rates. We suggest that extreme CO2-induced global warming selected for taxa with high LMA associated with a stress-tolerant strategy and that adaptive plasticity in leaf functional traits such as LMA contributed to post-warming ecological success.
  •  
8.
  • Soh, W. K., et al. (författare)
  • Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event
  • 2017
  • Ingår i: Nature Plants. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO 2 -induced global warming event on the ecological functioning of dominant plant communities. We use leaf mass per area (LMA), a widely used trait in modern plant ecology, to infer the palaeoecological strategy of fossil plant taxa. We show that palaeo-LMA can be inferred from fossil leaf cuticles based on a tight relationship between LMA and cuticle thickness observed among extant gymnosperms. Application of this new palaeo-LMA proxy to fossil gymnosperms from East Greenland reveals significant shifts in the dominant ecological strategies of vegetation found across the Triassic-Jurassic transition. Late Triassic forests, dominated by low-LMA taxa with inferred high transpiration rates and short leaf lifespans, were replaced in the Early Jurassic by forests dominated by high-LMA taxa that were likely to have slower metabolic rates. We suggest that extreme CO2-induced global warming selected for taxa with high LMA associated with a stress-tolerant strategy and that adaptive plasticity in leaf functional traits such as LMA contributed to post-warming ecological success.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy