SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McFarlane S. Eryn) "

Sökning: WFRF:(McFarlane S. Eryn)

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Silva, C. N. S., et al. (författare)
  • Insights into the genetic architecture of morphological traits in two passerine bird species
  • 2017
  • Ingår i: Heredity. - : Springer Science and Business Media LLC. - 0018-067X .- 1365-2540. ; 119:3, s. 197-205
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689 SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house sparrows and explained 1.2% of phenotypic variation (V-P), and one SNP on chromosome 4 was associated with tarsus length in collared flycatchers (3% of V-P). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a polygenic basis for morphological traits.
  •  
3.
  • Ålund, Murielle, et al. (författare)
  • Anthropogenic Change and the Process of Speciation
  • 2023
  • Ingår i: Cold Spring Harbor Perspectives in Biology. - : Cold Spring Harbor Laboratory Press (CSHL). - 1943-0264. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
  •  
4.
  • Cramer, Emily R. A., et al. (författare)
  • Females discriminate against heterospecific sperm in a natural hybrid zone
  • 2016
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 70:8, s. 1844-1855
  • Tidskriftsartikel (refereegranskat)abstract
    • When hybridization is maladaptive, species-specific mate preferences are selectively favored, but low mate availability may constrain species-assortative pairing. Females paired to heterospecifics may then benefit by copulating with multiple males and subsequently favoring sperm of conspecifics. Whether such mechanisms for biasing paternity toward conspecifics act as important reproductive barriers in socially monogamous vertebrate species remains to be determined. We use a combination of long-term breeding records from a natural hybrid zone between collared and pied flycatchers (Ficedula albicollis and F. hypoleuca), and an in vitro experiment comparing conspecific and heterospecific sperm performance in female reproductive tract fluid, to evaluate the potential significance of female cryptic choice. We show that the females most at risk of hybridizing (pied flycatchers) frequently copulate with multiple males and are able to inhibit heterospecific sperm performance. The negative effect on heterospecific sperm performance was strongest in pied flycatcher females that were most likely to have been previously exposed to collared flycatcher sperm. We thus demonstrate that a reproductive barrier acts after copulation but before fertilization in a socially monogamous vertebrate. While the evolutionary history of this barrier is unknown, our results imply that there is opportunity for it to be accentuated via a reinforcement-like process.
  •  
5.
  • de Villemereuil, Pierre, et al. (författare)
  • Fluctuating optimum and temporally variable selection on breeding date in birds and mammals
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 117:50, s. 31969-31978
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and auto-correlation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.
  •  
6.
  • Kardos, Marty, et al. (författare)
  • Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations
  • 2016
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 16:3, s. 727-741
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissecting the genetic basis of phenotypic variation in natural populations is a long-standing goal in evolutionary biology. One open question is whether quantitative traits are determined only by large numbers of genes with small effects, or whether variation also exists in large-effect loci. We conducted genomewide association analyses of forehead patch size (a sexually selected trait) on 81 whole-genome-resequenced male collared flycatchers with extreme phenotypes, and on 415 males sampled independent of patch size and genotyped with a 50K SNP chip. No SNPs were genomewide statistically significantly associated with patch size. Simulation-based power analyses suggest that the power to detect large-effect loci responsible for 10% of phenotypic variance was <0.5 in the genome resequencing analysis, and <0.1 in the SNP chip analysis. Reducing the recombination by two-thirds relative to collared flycatchers modestly increased power. Tripling sample size increased power to >0.8 for resequencing of extreme phenotypes (N=243), but power remained <0.2 for the 50K SNP chip analysis (N=1245). At least 1 million SNPs were necessary to achieve power >0.8 when analysing 415 randomly sampled phenotypes. However, power of the 50K SNP chip to detect large-effect loci was nearly 0.8 in simulations with a small effective population size of 1500. These results suggest that reliably detecting large-effect trait loci in large natural populations will often require thousands of individuals and near complete sampling of the genome. Encouragingly, far fewer individuals and loci will often be sufficient to reliably detect large-effect loci in small populations with widespread strong linkage disequilibrium.
  •  
7.
  • Koski, Tuuli-Marjaana, et al. (författare)
  • Differences in incubation behaviour and niche separation of two competing flycatcher species
  • 2020
  • Ingår i: Behavioral Ecology and Sociobiology. - : Springer Science and Business Media LLC. - 0340-5443 .- 1432-0762. ; 74:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Food availability sets the stage for incubation behaviour of a female bird and thereby indirectly determines the nest temperature, which in turn affects development and metabolism of avian embryos. Changes in development and metabolism in turn are known to influence offspring's ability to adjust to environmental changes later in life. However, few studies have investigated the role of interspecific differences in incubation behaviour in relation to niche separation between competing sibling species. We studied the effects of habitat quality (in terms of caterpillar availability) on incubation behaviour of two ecologically similar and closely related species, collared and pied flycatchers (Ficedula albicollisandF. hypoleuca), in their hybrid zone on the island of oland, Sweden. Even though both species prefer caterpillar-rich deciduous forests as nesting sites, collared flycatchers, whose nestlings have higher energetic demands, are able to nest only in deciduous forests, whereas pied flycatchers have more flexible habitat requirements. Overall, higher food availability was associated with increased nest attendance, higher incubation temperature and a lower number of foraging trips across species. In addition, collared flycatchers had more frequent and shorter foraging trips across habitat types, allocated more heat to eggs and therefore maintained higher nest temperatures compared to pied flycatchers. We argue that the higher heat allocation or the need to maintain a higher nest temperature for embryo development may constrain collared flycatchers to focus on relatively more profitable prey. Our results highlight the importance of considering incubation behaviour in the context of understanding species differences in niche use. Significance statement Niche separation plays an important role in mitigating effects of competition between closely related species. Whether species differences in incubation behaviour relate to differences in niche use remains unknown. We compared incubation behaviour of two sympatric flycatcher species that differ in sensitivity to food availability. The competitively more dominant and larger species, the collared flycatcher, whose nestlings are more sensitive to food shortages, made more frequent foraging trips but allocated more heat to eggs, leading to higher nest temperature despite lower nest attendance, compared to pied flycatchers. These interspecific differences may be a result of differences in embryo sensitivity or female physiology and contribute to the niche separation between the species, which in turn can facilitate coexistence.
  •  
8.
  • Lane, Jeffrey E., et al. (författare)
  • Phenological shifts in North American red squirrels : disentangling the roles of phenotypic plasticity and microevolution
  • 2018
  • Ingår i: Journal of Evolutionary Biology. - : WILEY. - 1010-061X .- 1420-9101. ; 31:6, s. 810-821
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenological shifts are the most widely reported ecological responses to climate change, but the requirements to distinguish their causes (i.e. phenotypic plasticity vs. microevolution) are rarely met. To do so, we analysed almost two decades of parturition data from a wild population of North American red squirrels (Tamiasciurus hudsonicus). Although an observed advance in parturition date during the first decade provided putative support for climate change-driven microevolution, a closer look revealed a more complex pattern. Parturition date was heritable [h(2)=0.14 (0.07-0.21 (HPD interval)] and under phenotypic selection [=-0.14 +/- 0.06 (SE)] across the full study duration. However, the early advance reversed in the second decade. Further, selection did not act on the genetic contribution to variation in parturition date, and observed changes in predicted breeding values did not exceed those expected due to genetic drift. Instead, individuals responded plastically to environmental variation, and high food [white spruce (Picea glauca) seed] production in the first decade appears to have produced a plastic advance. In addition, there was little evidence of climate change affecting the advance, as there was neither a significant influence of spring temperature on parturition date or evidence of a change in spring temperatures across the study duration. Heritable traits not responding to selection in accordance with quantitative genetic predictions have long presented a puzzle to evolutionary ecologists. Our results on red squirrels provide empirical support for one potential solution: phenotypic selection arising from an environmental, as opposed to genetic, covariance between the phenotypic trait and annual fitness.
  •  
9.
  • McFarlane, S. Eryn, et al. (författare)
  • Adjustment of resting metabolic rate by pied flycatchers to the environment promotes regional coexistence with sister species
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in life history strategies of closely related species can result in variation in relative fitness across heterogeneous environments and promote coexistence. However, physiological mechanisms mediating such variation in relative fitness have not been identified. Resting metabolic rate (RMR) is tightly associated with life-history strategies and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have evolved to different climatic niches in allopatry. We explore whether differences in RMR match changes in relative fitness between collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) across environmental conditions experienced in a recent hybrid zone. We found a negative correlation between nestling RMR and temperatures experienced during growth in pied flycatchers, which was absent in collared flycatchers. This implies that pied flycatchers are better adapted to the typical seasonal changes in temperature and food availability experienced at these northern breeding sites. There was sufficient additive genetic variance in RMR to respond to selection in both species that may either facilitate ecological character displacement or lead to a breakdown of coexistence. Generally, subtle differences in climate adaptation may play an important role to patterns of competition, coexistence or displacements between closely related species at recent secondary contact.
  •  
10.
  • McFarlane, S. Eryn, et al. (författare)
  • Admixture mapping reveals loci for carcass mass in red deer x sika hybrids in Kintyre, Scotland
  • 2021
  • Ingår i: G3: Genes, Genomes, Genetics. - : Oxford University Press (OUP). - 2160-1836. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We deployed admixture mapping on a sample of 386 deer from a hybrid swarm between native red deer (Cervus elaphus) and introduced Japanese sika (Cervus nippon) sampled in Kintyre, Scotland to search for quantitative trait loci (QTLs) underpinning phenotypic differences between the species. These two species are highly diverged genetically [Fst between pure species, based on 50K single nucleotide polymorphism (SNPs) ¼ 0.532] and phenotypically: pure red have on average twice the carcass mass of pure sika in our sample (38.7 kg vs 19.1 kg). After controlling for sex, age, and population genetic structure, we found 10 autosomal genomic locations with QTL for carcass mass. Effect sizes ranged from 0.191 to 1.839 kg and as expected, in all cases the allele derived from sika conferred lower carcass mass. The sika population was fixed for all small carcass mass alleles, whereas the red deer population was typically polymorphic. GO term analysis of genes lying in the QTL regions are associated with oxygen transport. Although body mass is a likely target of selection, none of the SNPs marking QTL are introgressing faster or slower than expected in either direction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
tidskriftsartikel (25)
annan publikation (5)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
McFarlane, S. Eryn (30)
Qvarnström, Anna (24)
Ålund, Murielle (16)
Ellegren, Hans (6)
Wheatcroft, David (6)
McAdam, Andrew G. (5)
visa fler...
Pemberton, Josephine ... (5)
Coltman, David W. (4)
Boutin, Stan (4)
Rönnegård, Lars (2)
Backström, Niclas (2)
Husby, Arild (2)
Wang, Mi (2)
Sæther, B-E (1)
Kempenaers, Bart (1)
Jensen, H. (1)
Pärt, Tomas (1)
Immler, Simone (1)
Taylor, Scott A. (1)
Cockburn, Andrew (1)
Sheldon, Ben C. (1)
Arlt, Debora (1)
Billing, A. M. (1)
Emami, S. Noushin (1)
Mozuraitis, Raimonda ... (1)
Kemppainen, P (1)
van der Valk, Tom (1)
Backström, Niclas, 1 ... (1)
van de Pol, Martijn (1)
Charmantier, Anne (1)
Senar, Juan Carlos (1)
Visser, Marcel E. (1)
Svanbäck, Richard (1)
Bize, Pierre (1)
Mugal, Carina (1)
Dutoit, Ludovic (1)
Mugal, Carina F (1)
Morrissey, Michael B ... (1)
de Villemereuil, Pie ... (1)
Brekke, Patricia (1)
Evans, Simon R. (1)
Festa-Bianchet, Marc ... (1)
Kruuk, Loeske E. B. (1)
Boughman, Janette W. (1)
Kawakami, Takeshi (1)
Comerford, Mattheau ... (1)
Cerca, José (1)
Ravinet, Mark (1)
Chevin, Luis Miguel (1)
Cramer, Emily R. A. (1)
visa färre...
Lärosäte
Uppsala universitet (28)
Lunds universitet (5)
Sveriges Lantbruksuniversitet (4)
Högskolan Dalarna (2)
Stockholms universitet (1)
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (31)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy