SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McGehee Michael D.) "

Sökning: WFRF:(McGehee Michael D.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anctil, Annick, et al. (författare)
  • Status report on emerging photovoltaics
  • 2023
  • Ingår i: JOURNAL OF PHOTONICS FOR ENERGY. - : SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS. - 1947-7988. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This report provides a snapshot of emerging photovoltaic (PV) technologies. It consists of concise contributions from experts in a wide range of fields including silicon, thin film, III-V, perovskite, organic, and dye-sensitized PVs. Strategies for exceeding the detailed balance limit and for light managing are presented, followed by a section detailing key applications and commercialization pathways. A section on sustainability then discusses the need for minimization of the environmental footprint in PV manufacturing and recycling. The report concludes with a perspective based on broad survey questions presented to the contributing authors regarding the needs and future evolution of PV.(c) 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
  •  
2.
  • Beal, Rachel E., et al. (författare)
  • Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials
  • 2020
  • Ingår i: Matter. - : Elsevier BV. - 2590-2393 .- 2590-2385. ; 2:1, s. 207-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic-inorganic metal-halide perovskite materials offer a promising route to reducing the dollars-per-watt cost of solar energy due to their good optoelectronic properties and facile, scalable processing. Compositional tuning allows for the preparation of absorbers with band gaps tailor-made for specific tandem and single-junction applications, but photoinduced phase segregation in mixed-halide materials leads to the formation of low-band-gap regions that reduce the voltage of devices. This work explores the structural origins of photoinduced phase segregation in FA(y)Cs(1-y)Pb(BrxI1-x)(3) perovskite alloys. We use synchrotron X- ray diffraction to map the solvus between the cubic and cubic-tetragonal mixed-phase region and time-dependent photoluminescence to assess stability under illumination. We show that the correlation between crystallographic phase and phase-segregation behavior is imperfect, so phase is not the sole determinant of optical stability. Instead, we consider several possible mechanisms that could underlie the dependence of optical stability on perovskite composition.
  •  
3.
  • Stone, Kevin H., et al. (författare)
  • Transformation from crystalline precursor to perovskite in PbCl2-derived MAPbI3
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the formation chemistry of metal halide perovskites is key to optimizing processing conditions and realizing enhanced optoelectronic properties. Here, we reveal the structure of the crystalline precursor in the formation of methylammonium lead iodide (MAPbI3) from the single-step deposition of lead chloride and three equivalents of methylammonium iodide (PbCl2 + 3MAI) (MA = CH3NH3). The as-spun film consists of crystalline MA2PbI3Cl, which is composed of one-dimensional chains of lead halide octahedra, coexisting with disordered MACl. We show that the transformation of precursor into perovskite is not favored in the presence of MACl, and thus the gradual evaporation of MACl acts as a self-regulating mechanism to slow the conversion. We propose the stable precursor phase enables dense film coverage and the slow transformation may lead to improved crystal quality. This enhanced chemical understanding is paramount for the rational control of film deposition and the fabrication of superior optoelectronic devices.
  •  
4.
  •  
5.
  • Almora, Osbel, et al. (författare)
  • Device Performance of Emerging Photovoltaic Materials (Version 1)
  • 2020
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the state-of-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs.
  •  
6.
  • Bianco, Federica B., et al. (författare)
  • Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time : A Pioneering Process of Community-focused Experimental Design
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 258:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey's massive data throughput will be transformational for many other astrophysics domains and Rubin's data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.
  •  
7.
  • Christoforo, M. Greyson, et al. (författare)
  • Transient response of organo-metal-halide solar cells analyzed by time-resolved current-voltage measurements
  • 2015
  • Ingår i: Photonics. - : MDPI AG. - 2304-6732. ; 2:4, s. 1101-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of the power conversion efficiency of solar cells based on organo-metal-halides is subject to an ongoing debate. As solar cell devices may exhibit very slow transient response, current-voltage scans in different directions may not be congruent, which is an effect often referred to as hysteresis. We here discuss time-resolved current-voltage measurements as a means to evaluate appropriate delay times (voltage settling times) to be used in current-voltage measurements of solar cells. Furthermore, this method allows the analysis of transient current response to extract time constants that can be used to compare characteristic differences between devices of varying architecture types, selective contacts and changes in devices due to storage or degradation conditions.
  •  
8.
  • Hu, Liangbing, et al. (författare)
  • Transparent and conductive paper from nanocellulose fibers
  • 2013
  • Ingår i: Energy & Environmental Science. - 1754-5692 .- 1754-5706. ; 6:2, s. 513-518
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report on a novel substrate, nanopaper, made of cellulose nanofibrils, an earth abundant material. Compared with regular paper substrates, nanopaper shows superior optical properties. We have carried out the first study on the optical properties of nanopaper substrates. Since the size of the nanofibrils is much less than the wavelength of visible light, nanopaper is highly transparent with large light scattering in the forward direction. Successful depositions of transparent and conductive materials including tin-doped indium oxide, carbon nanotubes and silver nanowires have been achieved on nanopaper substrates, opening up a wide range of applications in optoelectronics such as displays, touch screens and interactive paper. We have also successfully demonstrated an organic solar cell on the novel substrate.
  •  
9.
  • Unger, Eva, et al. (författare)
  • Sequential "click'' functionalization of mesoporous titania for energy-relay dye enhanced dye-sensitized solar cells
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:9, s. 6565-6571
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy relay dyes (ERDs) have been investigated previously as a mean to achieve panchromatic spectral response in dye-sensitized solar cells via energy transfer. To reduced the distance between the ERDs and energy-accepting injection dyes (IDs) on the surface of a mesoporous titanium dioxide electrode, the ERDs were immobilized adjacent to the IDs via a sequential functionalization approach. In the first step, azidobenzoic acid molecules were co-adsorbed on the mesoporous titanium dioxide surface with the ID. In the second step, the highly selective copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition "click'' reaction was employed to couple an alkyne-functionalized ERD to the azidobenzoic acid monolayer. The cycloaddition step in the mesoporous electrode was slowed dramatically due to reactants and catalysts forming agglomerates. In solar cell devices, the close proximity between the surface-immobilized ERD and energy-accepting squaraine sensitizer dyes results in energy transfer efficiencies of up to 91%. The relative improvement in device performance due to the additional ERD spectral response was 124%, which is among the highest reported. The sequential functionalization approach described herein is transferrable to other applications requiring the functionalization of electrodes with complex molecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy