SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McIlvride Saraid) "

Sökning: WFRF:(McIlvride Saraid)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borges Manna, Luiza, et al. (författare)
  • Ursodeoxycholic acid improves feto-placental and offspring metabolic outcomes in hypercholanemic pregnancy.
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Perturbations in the intrauterine environment can result in lifelong consequences for metabolic health during postnatal life. Intrahepatic cholestasis of pregnancy (ICP) can predispose offspring to metabolic disease in adulthood, likely due to a combination of the effects of increased bile acids, maternal dyslipidemia and deranged maternal and fetal lipid homeostasis. Whereas ursodeoxycholic acid (UDCA) is a commonly used treatment for ICP, no studies have yet addressed whether it can also prevent the metabolic effects of ICP in the offspring and fetoplacental unit. We therefore analyzed the lipid profile of fetal serum from untreated ICP, UDCA-treated ICP and uncomplicated pregnancies and found that UDCA ameliorates ICP-associated fetal dyslipidemia. We then investigated the effects of UDCA in a mouse model of hypercholanemic pregnancy and showed that it induces hepatoprotective mechanisms in the fetal liver, reduces hepatic fatty acid synthase (Fas) expression and improves glucose tolerance in the adult offspring. Finally, we showed that ICP leads to epigenetic changes in pathways of relevance to the offspring phenotype. We therefore conclude that UDCA can be used as an intervention in pregnancy to reduce features of metabolic disease in the offspring of hypercholanemic mothers.
  •  
2.
  • McIlvride, Saraid, et al. (författare)
  • Obeticholic acid ameliorates dyslipidemia but not glucose tolerance in mouse model of gestational diabetes.
  • 2019
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 317:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolism alters markedly with advancing gestation, characterized by progressive insulin resistance, dyslipidemia, and raised serum bile acids. The nuclear receptor farnesoid X receptor (FXR) has an integral role in bile acid homeostasis and modulates glucose and lipid metabolism. FXR is known to be functionally suppressed in pregnancy. The FXR agonist, obeticholic acid (OCA), improves insulin sensitivity in patients with type 2 diabetes with nonalcoholic fatty liver disease. We therefore hypothesized that OCA treatment during pregnancy could improve disease severity in a mouse model of gestational diabetes mellitus (GDM). C57BL/6J mice were fed a high-fat diet (HFD; 60% kcal from fat) for 4 wk before and throughout pregnancy to induce GDM. The impact of the diet supplemented with 0.03% OCA throughout pregnancy was studied. Pregnant HFD-fed mice displayed insulin resistance and dyslipidemia. OCA significantly reduced plasma cholesterol concentrations in nonpregnant and pregnant HFD-fed mice (by 22.4%, P < 0.05 and 36.4%, P < 0.001, respectively) and reduced the impact of pregnancy on insulin resistance but did not change glucose tolerance. In nonpregnant HFD-fed mice, OCA ameliorated weight gain, reduced mRNA expression of inflammatory markers in white adipose tissue, and reduced plasma glucagon-like peptide 1 concentrations (by 62.7%, P < 0.01). However, these effects were not evident in pregnant mice. OCA administration can normalize plasma cholesterol levels in a mouse model of GDM. However, the absence of several of the effects of OCA in pregnant mice indicates that the agonistic action of OCA is not sufficient to overcome many metabolic consequences of the pregnancy-associated reduction in FXR activity.
  •  
3.
  • Pataia, Vanessa, et al. (författare)
  • Obeticholic acid improves fetal bile acid profile in a mouse model of gestational hypercholanemia.
  • 2020
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 319:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrahepatic cholestasis of pregnancy (ICP) is characterized by elevated maternal circulating bile acid levels and associated dyslipidemia. ICP leads to accumulation of bile acids in the fetal compartment and the elevated bile acid concentrations are associated with an increased risk of adverse fetal outcomes. The farnesoid X receptor agonist, obeticholic acid (OCA) is efficient in the treatment of cholestatic conditions such as primary biliary cholangitis. We hypothesized that OCA administration during hypercholanemic pregnancy will improve maternal and fetal bile acid and lipid profiles. Female C57BL/6J mice were fed either: a normal chow diet, a 0.5% cholic acid (CA)-supplemented diet, a 0.03% OCA-supplemented diet, or a 0.5% CA + 0.03% OCA-supplemented diet for 1 week prior to mating and throughout pregnancy until euthanization on day 18. The effects of CA and OCA feeding on maternal and fetal morphometry, bile acid and lipid levels, and cecal microbiota were investigated. OCA administration during gestation did not alter the maternal or fetal body weight or organ morphometry. OCA treatment during hypercholanemic pregnancy reduced bile acid levels in the fetal compartment. However, fetal dyslipidemia was not reversed, and OCA did not impact maternal bile acid levels or dyslipidemia. In conclusion, OCA administration during gestation had no apparent detrimental impact on maternal or fetal morphometry and improved fetal hypercholanemia. As high serum bile acid concentrations in ICP are associated with increased rates of adverse fetal outcomes, further investigations into the potential use of OCA during cholestatic gestation are warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy