SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Megner L.) "

Sökning: WFRF:(Megner L.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harvey, V. Lynn, et al. (författare)
  • Improving ionospheric predictability requires accurate simulation of the mesospheric polar vortex
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved.
  •  
2.
  •  
3.
  • Giono, G., et al. (författare)
  • Characterisation of the analogue read-out chain for the CCDs onboard the mesospheric airglow/aerosol tomography and spectroscopy (MATS)
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. - 9781510619494 ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • The MATS satellite aims at observing airglow and noctilucent clouds in the mesosphere. The main instrument consists of a six channels limb imager in the near-ultraviolet and near-infrared. A high signal-to-noise ratio is required for detecting these mesospheric phenomena: 100 and 500 for ultraviolet and infrared, respectively. This is achieved by an optical design minimizing stray-light, but also with a dedicated design of the read-out analogue chain for the CCD on each channel. The requirements and expected light level on the imaging channels are brie y discussed before focusing on the CCD read-out analogue chain, for which the design and performances are presented.
  •  
4.
  • Hultgren, Kristoffer, et al. (författare)
  • What caused the exceptional mid-latitudinal Noctilucent Cloud event in July 2009?
  • 2011
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 73:14-15, s. 2125-2131
  • Tidskriftsartikel (refereegranskat)abstract
    • Noctilucent Clouds (NLCs) are rarely observed at mid-latitudes. In July 2009, strong NLCs were recorded from both Paris and Nebraska, located at latitudes 48 degrees N and 41 degrees N, respectively. The main focus of this work is on the atmospheric conditions that have led to NLCs at these latitudes. We investigate to what extent these clouds may be explained by local formation or by transport from higher latitudes. The dynamical situation is analyzed in terms of wind fields created from Aura/MLS temperature data and measured by radar. We discuss possible tidal effects on the transport and examine the general planetary wave activity during these days. The winds do not seem sufficient to transport NLC particles long southward distances. Hence a local formation is rather likely. In order to investigate the possibility of local NLC formation, the CARMA microphysical model has been applied with temperature data from MLS as input. The results from the large-scale datasets are compared to NLC observations by Odin and to local NLC, temperature and wind measurements by lidar and radar. The reason for the exceptional NLC formation is most likely a combination of local temperature variations by diurnal tides, advantageously located large-scale planetary waves, and general mesospheric temperature conditions that were 5-10 K colder than in previous years. The results also point to that NLCs are very unlikely to occur at latitudes below 50 degrees N during daytime. This conclusion can be made from a tidal temperature mode with cold temperatures during nighttime and temperatures above the limit for NLC occurrence during daytime. The best time for observing mid-latitude NLCs is during the early morning hours.
  •  
5.
  • Megner, Linda, et al. (författare)
  • Linearity aspects of the ensemble of data assimilations technique
  • 2015
  • Ingår i: Quarterly Journal of the Royal Meteorological Society. - : Wiley. - 0035-9009 .- 1477-870X. ; 141:687, s. 426-432
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the linearity of the Ensemble of Data Assimilations (EDA) technique with respect to the amplitude of the applied observation perturbations. We provide explicit examples to assess the linear relationship between such modifications of the observing system and the resulting changes in the EDA ensemble spread. The results demonstrate that, for a state-of-the-art numerical weather prediction (NWP) system, such linearity between the applied observation perturbations and the EDA ensemble spread holds well for temporal and spatial regimes relevant to global medium-range weather prediction: specifically, for forecast lead-times of up to approximately 5 days, in the vertical throughout the troposphere up to the lower and middle stratosphere and for broad horizontal scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy