SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meidl Peter) "

Sökning: WFRF:(Meidl Peter)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mikryukov, Vladimir, et al. (författare)
  • Connecting the multiple dimensions of global soil fungal diversity
  • 2023
  • Ingår i: Science advances. - 2375-2548. ; 9:48
  • Tidskriftsartikel (refereegranskat)abstract
    • How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
  •  
2.
  • Tedersoo, Leho, et al. (författare)
  • Global patterns in endemicity and vulnerability of soil fungi.
  • 2022
  • Ingår i: Global change biology. - : Wiley. - 1365-2486 .- 1354-1013. ; 28:22, s. 6696-6710
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
  •  
3.
  • Meidl, Peter, et al. (författare)
  • Soil fungal communities of ectomycorrhizal dominated woodlands across West Africa
  • 2021
  • Ingår i: MycoKeys. - : Pensoft Publishers. - 1314-4057 .- 1314-4049. ; 81, s. 45-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Forests and woodlands in the West African Guineo-Sudanian transition zone contain many tree species that form symbiotic interactions with ectomycorrhizal (ECM) fungi. These fungi facilitate plant growth by increasing nutrient and water uptake and include many fruiting body-forming fungi, including some edible mushrooms. Despite their importance for ecosystem functioning and anthropogenic use, diversity and distribution of ECM fungi is severely under-documented in West Africa. We conducted a broad regional sampling across five West African countries using soil eDNA to characterize the ECM as well as the total soil fungal community in gallery forests and savanna woodlands dominated by ECM host tree species. We subsequently sequenced the entire ITS region and much of the LSU region to infer a phylogeny for all detected soil fungal species. Utilizing a long read sequencing approach allows for higher taxonomic resolution by using the full ITS region, while the highly conserved LSU gene allows for a more accurate higher-level assignment of species hypotheses, including species without ITS-based taxonomy assignments. We detect no overall difference in species richness between gallery forests and woodlands. However, additional gallery forest plots and more samples per plot would have been needed to firmly conclude this pattern. Based on both abundance and richness, species from the families Russulaceae and Inocybaceae dominate the ECM fungal soil communities across both vegetation types. The community structure of both total soil fungi and ECM fungi was significantly influenced by vegetation types and showed strong correlation within plots. However, we found no significant difference in fungal community structure between samples collected adjacent to different host tree species within each plot. We conclude that within plots, the fungal community is structured more by the overall ECM host plant community than by the species of the individual host tree that each sample was collected from.
  •  
4.
  • Tedersoo, L., et al. (författare)
  • The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
  • 2021
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 111, s. 573-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy