SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meira de Faria Felipe) "

Sökning: WFRF:(Meira de Faria Felipe)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biskou, Olga, et al. (författare)
  • Increased Numbers of Enteric Glial Cells in the Peyers Patches and Enhanced Intestinal Permeability by Glial Cell Mediators in Patients with Ileal Crohns Disease
  • 2022
  • Ingår i: Cells. - Basel, Switzerland : MDPI. - 2073-4409. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Enteric glial cells (EGC) are known to regulate gastrointestinal functions; however, their role in Crohns disease (CD) is elusive. Microscopic erosions over the ileal Peyers patches are early signs of CD. The aim of this work was to assess the localization of EGC in the follicle and interfollicular region of the Peyers patches and in the lamina propria and study the effects of EGC mediators on barrier function in CD patients and non-inflammatory bowel disease (non-IBD) controls. EGC markers, glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein β (S100β) were quantified by immunofluorescence and Western blotting. Both markers showed significantly more EGC in the Peyers patches and lamina propria of CD patients compared to the non-IBD controls. In CD patients there were significantly more EGC in Peyers patches compared to lamina propria, while the opposite pattern was seen in controls. Barrier function studies using Ussing chambers showed increased paracellular permeability by EGC mediators in CD patients, whereas permeability decreased by the mediators in controls. We show the accumulation of EGC in Peyers patches of CD patients. Moreover, EGC mediators induced barrier dysfunction in CD patients. Thus, EGC might have harmful impacts on ongoing inflammation and contribute to the pathophysiology of the disease.
  •  
2.
  • Casado-Bedmar, Maite, et al. (författare)
  • Elevated F-EDN correlates with mucosal eosinophil degranulation in patients with IBS : A possible association with microbiota?
  • 2022
  • Ingår i: Journal of Leukocyte Biology. - : Alan R. Liss Inc.. - 0741-5400 .- 1938-3673. ; 111:3, s. 655-665
  • Tidskriftsartikel (refereegranskat)abstract
    • Eosinophils have been linked to functional dyspepsia; however, less is known about their role in irritable bowel syndrome (IBS). This study tested the hypothesis of alterations in levels of fecal eosinophil-derived neurotoxin (F-EDN) and eosinophil density and degranulation within the colonic mucosa of IBS patients compared with healthy controls (HC). Colonic biopsies were collected from 37 IBS patients and 20 HC and analyzed for eosinophil numbers and local degranulation of eosinophil cationic protein (ECP) by histologic procedures. Fecal samples were collected for F-EDN and microbiota analysis. Differentiated 15HL-60 cells were used in vitro to investigate the direct effect of live bacteria on eosinophil activation measured by a colorimetric assay with o-phenylenediamine (OPD) substrate. We observed a higher number of eosinophils and increased extracellular ECP in the mucosa of IBS patients compared with HC. Moreover, F-EDN levels in IBS samples were elevated compared with HC and positively correlated to extracellular ECP. Metagenomic analysis showed significant correlations between bacterial composition and eosinophil measurements in both HC and IBS patients. In vitro experiments revealed an increased degranulation of 15HL-60 after stimulation with Salmonella typhimurium, Salmonella enterica, and Yersinia enterocolitica. To conclude, we could demonstrate alterations related to eosinophils in IBS, and, for the first time, a positive correlation between F-EDN levels and degranulated eosinophils in the colonic mucosa of IBS patients. Together our results suggest that eosinophils play a role in the pathophysiology of IBS and the mechanisms might be linked to an altered microbiota.
  •  
3.
  • Hagbom, Marie, et al. (författare)
  • Neurotrophic Factors Protect the Intestinal Barrier from Rotavirus Insult in Mice
  • 2020
  • Ingår i: mBio. - : AMER SOC MICROBIOLOGY. - 2161-2129 .- 2150-7511. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased intestinal permeability has been proposed as a mechanism of rotavirus-induced diarrhea. Studies with humans and mice have, however, shown that rotavirus leaves intestinal permeability unaffected or even reduced during diarrhea, in contrast to most bacterial infections. Gastrointestinal permeability is regulated by the vagus nerve and the enteric nervous system, which is composed of neurons and enteric glial cells (EGCs). We investigated whether the vagus nerve, serotonin (5-HT), EGCs, and neurotropic factors contribute to maintaining gut barrier homeostasis during rotavirus infection. Using subdiaphragmatic vagotomized and 5-HT3 receptor knockout mice, we found that the unaffected epithelial barrier during rotavirus infection is independent of the vagus nerve but dependent on 5-HT signaling through enteric intrinsic 5-HT3 receptors. Immunofluorescence analysis showed that rotavirus-infected enterocytes were in close contact with EGCs and enteric neurons and that the glial cell-derived neurotrophic factor (GDNF) was strongly upregulated in enterocytes of infected mice. Moreover, rotavirus and 5-HT activated EGCs (P < 0.001). Using Ussing chambers, we found that GDNF and S-nitrosoglutathione (GSNO) led to denser epithelial barriers in small intestinal resections from noninfected mice (P < 0.01) and humans (P < 0.001) and that permeability was unaffected in rotavirus-infected mice. GSNO made the epithelial barrier denser in Caco-2 cells by increasing the expression of the tight junction protein zona occludens 1 (P < 0.001), resulting in reduced passage of fluorescein isothiocyanate dextran (P < 0.05) in rotavirus-infected monolayers. This is the first report to show that neurotropic factors contribute to maintaining the gut epithelial barrier during viral insult. IMPORTANCE Human and mouse studies have shown that rotavirus infection is associated with low inflammation and unaffected intestinal barrier at the time of diarrhea, properties different from most bacterial and inflammatory diseases of the gut. We showed by in vitro, ex vivo, and in vivo experiments that neurotrophic factors and 5-HT have barrier protective properties during rotavirus insult. These observations advance our understanding of how the gut barrier is protected against rotavirus and suggest that rotavirus affects the gut barrier differently from bacteria. This is the first report to show that neurotrophic factors contribute to maintain the gut epithelial barrier during viral insult.
  •  
4.
  • Hagbom, Marie, et al. (författare)
  • The 5-HT3 Receptor Affects Rotavirus-Induced Motility
  • 2021
  • Ingår i: Journal of Virology. - : AMER SOC MICROBIOLOGY. - 0022-538X .- 1098-5514. ; 95:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Rotavirus infection is highly prevalent in children, and the most severe effects are diarrhea and vomiting. It is well accepted that the enteric nervous system (ENS) is acti-vated and plays an important role, but knowledge of how rotavirus activates nerves within ENS and to the vomiting center is lacking. Serotonin is released during rotavirus infection, and antagonists to the serotonin receptor subtype 3 (5-HT3 receptor) can attenuate rotavi-rus-induced diarrhea. In this study, we used a 5-HT3 receptor knockout (KO) mouse model to investigate the role of this receptor in rotavirus-induced diarrhea, motility, electrolyte secretion, inflammatory response, and vomiting reflex. The number of diarrhea days (P= 0.03) and the number of mice with diarrhea were lower in infected 5-HT3 receptor KO than wild-type pups. In vivo investigation of fluorescein isothiocyanate (FITC)-dextran transit time showed that intestinal motility was lower in the infected 5-HT3 receptor KO compared to wild-type mice (P= 0.0023). Ex vivo Ussing chamber measurements of poten-tial difference across the intestinal epithelia showed no significant difference in electrolyte secretion between the two groups. Immediate early gene cFos expression level showed no difference in activation of the vomiting center in the brain. Cytokine analysis of the intestine indicated a low effect of inflammatory response in rotavirus-infected mice lack -ing the 5-HT3 receptor. Our findings indicate that the 5-HT3 receptor is involved in rotavi-rus-induced diarrhea via its effect on intestinal motility and that the vagus nerve signaling to the vomiting center occurs also in the absence of the 5-HT3 receptor. IMPORTANCE The mechanisms underlying rotavirus-induced diarrhea and vomiting are not yet fully understood. To better understand rotavirus pathophysiology, characterization of nerve signaling within the ENS and through vagal efferent nerves to the brain, which have been shown to be of great importance to the disease, is necessary. Serotonin (5-HT), a mediator of both diarrhea and vomiting, has been shown to be released from entero-chromaffin cells in response to rotavirus infection and the rotavirus enterotoxin NSP4. Here, we investigated the role of the serotonin receptor 5-HT3, which is known to be involved in the nerve signals that regulate gut motility, intestinal secretion, and signal transduction through the vagus nerve to the brain. We show that the 5-HT3 receptor is involved in rotavirus-induced diarrhea by promoting intestinal motility. The findings shed light on new treatment possibilities for rotavirus diarrhea.
  •  
5.
  • Meira de-Faria, Felipe, 1984-, et al. (författare)
  • Altered interaction between enteric glial cells and mast cells in the colon of women with irritable bowel syndrome
  • 2021
  • Ingår i: Neurogastroenterology and Motility. - : Blackwell Science Ltd.. - 1350-1925 .- 1365-2982. ; 33:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Enteric glial cells (EGC) and mast cells (MC) are intimately associated with gastrointestinal physiological functions. We aimed to investigate EGC-MC interaction in irritable bowel syndrome (IBS), a gut-brain disorder linked to increased intestinal permeability, and MC.Methods: Parallel approaches were used to quantify EGC markers in colonic biopsies from healthy controls (HC) and patients with IBS. Data were correlated with MC, vasoactive intestinal polypeptide (VIP) and VIP receptors (VPAC1/VPAC2) expressions, and bacterial translocation through biopsies mounted in Ussing chambers. In addition, we investigated the effects of EGC mediators on colonic permeability and the pharmacological-induced responses of EGC and MC cell lines.Key Results: Immunofluorescence of IBS colonic mucosa, as well as Western blotting and ELISA of IBS biopsy lysates, revealed increased glial fibrillary intermediate filament (GFAP) expression, indicating EGC activation. Mucosal GFAP correlated with increased MC and VPAC1(+)MC numbers and decreased VIP+MC, which seemed to control bacterial translocation in HC. In the contrary, EGC activation in IBS correlated with less MC and VPAC1(+) MC numbers, and more VIP+ MC. In vitro, MC and EGC cell lines showed intracellular calcium responses to each other's mediators. Furthermore, EGC mediators prevented VIP-induced MC degranulation, while MC mediators induced a reactive EGC phenotype. In Ussing chambers, EGC mediators decreased paracellular passage through healthy colonic biopsies.Conclusions & Inferences: Findings suggest the involvement of EGC and MC in the control of barrier function in the human colon and indicate a potential EGC-MC interaction that seems altered in IBS, with detrimental consequences to colonic permeability. Altogether, results suggest that imbalanced EGC-MC communication contributes to the pathophysiology of IBS.
  •  
6.
  • Meira de Faria, Felipe, et al. (författare)
  • Colonic paracellular permeability and circulating zonulin-related proteins
  • 2021
  • Ingår i: Scandinavian Journal of Gastroenterology. - : Taylor & Francis. - 0036-5521 .- 1502-7708. ; 56:4, s. 424-431
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Irritable bowel syndrome (IBS) is a gut-brain disorder associated with increased gut permeability. Zonulin has been suggested to regulate the gut barrier and claimed to be pre-haptoglobin 2 (pre-HP2) and circulating zonulin is often used as a proxy for gastrointestinal permeability. This study investigated the correlation between colonic paracellular permeability and levels of circulating zonulin and pre-HP2. Materials and Methods Colonic biopsies from 32 patients with IBS and 15 healthy controls (HC) were used to measure permeability in Ussing chambers and levels of zonulin (Cusabio ELISA). Zonulin was also measured in blood samples from 40 HC, 78 patients with IBS and 20 patients with celiac disease (CeD), before and after a gluten-free diet. In addition, we verified HP genotype and circulating pre-HP2 using a monoclonal pre-HP2 antibody (Bio-Rad) by ELISA. Results Increased colonic paracellular permeability correlated positively with zonulin levels in IBS biopsies, but negatively with plasma zonulin. We found no agreement between circulating zonulin and pre-HP2. Genotyping revealed non-specificity of the zonulin kit, as all pre-HP2 non-producers presented detectable levels. Patients with CeD displayed higher pre-HP2 and zonulin levels compared to HC. A gluten-free diet in patients with CeD led to lower serum zonulin and pre-HP2 concentrations. Conclusions Our study suggests that neither circulating zonulin nor pre-HP2 mirror colonic permeability. Our data corroborate previous reports showing the inability of the Cusabio zonulin kit to target zonulin and highlights that the results of studies using this kit must be re-examined with caution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy