SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mellin Pelle 1985 ) "

Sökning: WFRF:(Mellin Pelle 1985 )

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mellin, Pelle, 1985-, et al. (författare)
  • Accuracy and Potential Use of a Developed CFD-pyrolysis Model for Simulating Lab-scale Bio Oil Production
  • 2012
  • Ingår i: The 20th EU BC&E Online Proceedings 2012. - 9788889407547 ; , s. 953-959
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The paper describes development of a CFD¬pyrolysis model using an Eularian-Eularian framework with an implemented pyrolysis reaction model. The CFD¬pyrolysis model is used to simulate the bubbling fluidized bed reactor integrated in a new experimental fast pyrolysis process for bio oil production. The model is compared to experiments in aspect of outlet gas composition, temperature and bed height. Tar behavior and yield of bio oil are illustrated and a parametric study investigates impact of flow rate and temperature on bio oil yield. The results show a tolerable fit compared to measurements and reasonable tendencies in the parametric study.
  •  
3.
  •  
4.
  • Mellin, Pelle, 1985-, et al. (författare)
  • CFD Modelling of Heat Supply in Fluidized Bed Fast Pyrolysis of Biomass
  • 2014
  • Ingår i: Proceedings of the 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries (CFD 2014). - 9788214057416
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This paper investigates the heat supply to the fast pyrolysis process, by addition of oxygen in the fluidizing gas. Since the technology will be further developed, a solution for the heat supply in a large-scale reactor must be conceived, which is one option to achieve the primary target: to operate with as little extra heat as possible.Corrections for the granular bed material and the biomass particles are implemented in the simulation. User Defined Functions (UDF) is extensively used to describe interactions of heat and momentum between the phases and a chemistry model is employed to describe the chemical reactions after pyrolysis.The results are preliminary; however, the oxygen clearly reacts to provide heat. Primarily the secondary tar reacts and a loss of about 30% organic liquid yield is the result in this simulation, at an equivalence ratio of 0.026.If heat only can be recovered from the bed zone, through the bed material, then a higher equivalence ratio than what was investigated in this paper would be needed.If heat can be recovered from the whole reactor then a slight injection of oxygen would result in an autothermal system; which means the necessary heat to generate and pre-heat steam would be available.Temperature instability in the freeboard prevented investigation of higher equivalence ratios, which should be pursued in further work.
  •  
5.
  • Mellin, Pelle, 1985-, et al. (författare)
  • Computational fluid dynamics modeling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme
  • 2014
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 117:Part A, s. 704-715
  • Tidskriftsartikel (refereegranskat)abstract
    • The CFD modeling for fast pyrolysis has previously focused on the major pyrolysis products; liquid, charand gas. This paper introduces a new approach to biomass pyrolysis; integrating a complex scheme of reactions including formation of such components as levoglucosan. The 3-D simulation takes into account the complex breakdown of each biomass subcomponent, the fluid dynamics of the process as well as the heat and momentum transfer of three Eulerian phases.The pyrolysis products include reference species that reflects the composition of the bio oil, gas fraction and char fraction. A number of reactions are in addition applied to account for the thermal cracking of tar compounds and the final compositions are compared to experimental yields. The results show that the predicted pyrolysis products reflect the experimental yields satisfactorily, apart from the water content which is under predicted. Most importantly though, the approach is computationally feasible and it should be useful for future work.
  •  
6.
  • Mellin, Pelle, et al. (författare)
  • COPGLOW and XPS investigation of recycled metal powder for selective laser melting
  • 2017
  • Ingår i: Powder Metallurgy. - : Informa UK Limited. - 0032-5899 .- 1743-2901. ; 60:3, s. 223-231
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this paper is to compare, in terms of depth composition profile, a recycled hastelloy X powder and a virgin powder of the same alloy. We compare also the COPGLOW (compacted powder glow discharge analysis) method to the more established XPS (X-ray photoelectron spectroscopy) technique, in terms of similarity in reported elemental contents. A good match between the two methods was obtained on the surface of the powder particles (using an etching depth of 1 nm). Similar oxide layer thickness, of about 0.5–1 nm, was found on both powders by COPGLOW. Oxidation sensitive elements, such as Cr, were found on the surfaces by both XPS and COPGLOW on both powders. Surface content of Si appears to have decreased during use in selective laser melting. Finally, the two methods did not otherwise reveal any unexpected features in the depth profiles.
  •  
7.
  • Mellin, Pelle, 1985-, et al. (författare)
  • Influence of Reaction Atmosphere (H2O, N2, H2, CO2, CO) on Fluidized-Bed Fast Pyrolysis of Biomass Using Detailed Tar Vapor Chemistry in Computational Fluid Dynamics
  • 2015
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 0888-5885 .- 1520-5045. ; 54:33, s. 8344-8355
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.
  •  
8.
  • Mellin, Pelle, 1985-, et al. (författare)
  • Nano-sized by-products from metal 3D printing, composite manufacturing and fabric production
  • 2016
  • Ingår i: Journal of Cleaner Production. - Sweden : Elsevier. - 0959-6526 .- 1879-1786. ; 139, s. 1224-1233
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, the health and environmental perspective of nano-materials has gained attention. Most previous work focused on Engineered Nanoparticles (ENP). This paper examines some recently introduced production routes in terms of generated nano-sized by-products. A discussion on the hazards of emitting such particles and fibers is included. Fine by-products were found in recycled metal powder after 3D printing by Selective Laser Melting (SLM). The process somehow generated small round metal particles (~1e2 mm) that are possibly carcinogenic and respirable, but not small enough to enter by skin-absorption. With preventive measures like closed handling and masks, any health related effects can be prevented. The composite manufacturing in particular generated ceramic and carbonaceous particles that are very small and respirable but do not appear to be intrinsically toxic. The smallest features in agglomerates were about 30 nm. Small particles and fibers that were not attached in agglomerates were found in a wide range of sizes, from 1 μm and upwards. Preventive measures like closed handling and masks are strongly recommended. In contrast, the more traditional production route of fabric production is investigated. Here, brushing residue and recycled wool from fabric production contained few nano-sized by-products.
  •  
9.
  • Mellin, Pelle, 1985-, et al. (författare)
  • Processing of biomass to Hydrocarbons – using a new catalytic steam pyrolysis route
  • 2014
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Obtaining renewable transportation fuel has been identified as one of the main challenges for a sustainable society. Catalytic pyrolysis followed by hydrotreatment has been demonstrated as one possible route for producing transportation fuels. Using steam in this process could have a number of benefits as given by our research effort. For this paper, we will show that a catalyst together with steam prolongs the activity of the catalyst by preventing coking. This means that both steam and catalyst mutually benefits the deoxygenation. The presented mass and energy balance shows that up to 40% of the calorific value of biomass remains in the deoxygenated oil, on dry basis. This is in contrast to the mass yield, which for the same case was 25%; meaning that the oil is of significantly higher quality with a high content of hydrocarbons. In addition, CFD studies have shown steam is able to redistribute the heat flux and provide more uniform operating conditions compared to for example nitrogen. In conclusion, this route using steam shows promise for displacing fossil transportation fuels, by upgrading of the liquid in existing refineries or next-generation bio refineries. In additional support of this, we have published a number of papers describing conventional fast pyrolysis using steam, CFD modeling for further understanding and experimental work using a combination of steam and firstly a bimetallic catalyst (Ni, V) then a metal modified HZSM5 catalyst (Ni, V, Zeolite, Binder). This paper connects all these individual studies and provides further understanding of the role of steam and the role of steam in combination with a catalyst, in the fast pyrolysis process.
  •  
10.
  • Mellin, Pelle, 1985- (författare)
  • Pyrolysis of biomass in fluidized-beds: in-situ formation of products and their applications for ironmaking
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The iron and steel industry emitted 8 % of all CO2 emissions in Sweden, 2011. Investigating alternative energy carriers is the purpose of this thesis. By pyrolyzing biomass, an energetic solid, gaseous and liquid (bio oil) fraction is obtained. If pyrolyzing biomass in a fluidized-bed reactor, the highest value may be added to the combined products. Additional understanding of pyrolysis in fluidized beds is pursued, using Computational Fluid Dynamics (CFD) and comprehensive kinetic schemes. The obtained solid product is investigated as a bio-injectant in blast furnaces for ironmaking.A new approach of separately modeling, the primary and secondary pyrolysis, is developed in this thesis. A biomass particle devolatilizes during pyrolysis. Primary pyrolysis is the solid decomposition which results in the volatiles that can leave the particle. Secondary pyrolysis is the decompositions of these volatiles, primarily in the gas phase.The primary pyrolysis (35 species, 15 reactions) mainly occurs in the bed-zone and as such, the model needs to take into account the complex physical interaction of biomass-particles with the fluidizing media (sand) and the fluidizing agent (gas). This is accomplished by representing the components by Eulerian phases and implementing interaction terms, as well as using a Stiff Chemistry Solver for the implemented reactions. The secondary pyrolysis (not considering heterogeneous reactions), mainly occurs outside the bed zone in one phase. The fluid flow is simpler but the chemistry is more complex, with a larger variety of molecules emerging. Carrying out the simulations time-effectively, for the secondary pyrolysis (134 species, 4169 reactions) is accomplished by using Dimension Reduction, Chemistry Agglomeration and In-situ Tabulation (ISAT); in a Probability Density Functional (PDF) framework.An analysis of the numerical results suggest that they can be matched adequately with experimental measurements, considering pressure profiles, temperature profiles and the overall yield of gas, solid and liquid products. Also, with some exceptions, the yield of major and minor gaseous species can be matched to some extent. Hence, the complex physics and chemistry of the integrated process can be considered fairly well-considered but improvements are possible. A parametric study of reaction atmospheres (or fluidizing agents), is pursued as means of understanding the process better. The models revealed significant effects of the atmosphere, both physically (during the primary and secondary pyrolysis) and chemically (during secondary pyrolysis).During primary pyrolysis, the physical influence of reaction atmospheres (N2, H2O) is investigated. When comparing steam to nitrogen, heat flux to the biomass particles, using steam, is better distributed on a bed level and on a particle level.During secondary pyrolysis, results suggest that turbulence interaction plays an important role in accelerating unwanted decomposition of the liquid-forming volatiles. Steam, which is one of the investigated atmospheres (N2, H2O, H2, CO, CO2), resulted in a lower extent of unwanted secondary pyrolysis. Altough, steam neither resulted in the shortest vapor residence time, nor the lowest peak temperature, nor the lowest peak radical concentration; all factors known to disfavor secondary pyrolysis. A repeated case, using a high degree of turbulence at the inlet, resulted in extensive decompositions. The attractiveness of the approach is apparent but more testing and development is required; also with regards to the kinetic schemes, which have been called for by several other researchers.The solid fraction after pyrolysis is known as charcoal. Regarding its use in blast furnaces; modelling results indicate that full substitution of fossil coal is possible. Substantial reductions in CO2 emissions are hence possible. Energy savings are furthermore possible due to the higher oxygen content of charcoal (and bio-injectants in general), which leads to larger volumes of blast furnace gas containing more latent energy (and less non-recoverable sensible energy). Energy savings are possible, even considering additional electricity consumption for oxygen enrichment and a higher injection-rate on energy basis.A survey of biomass availability and existing technology suppliers in Sweden, suggest that all injection into Blast furnace M3 in Luleå, can be covered by biomass. Based on statistics from 2008, replacement of coal-by-charcoal from pyrolysis could reduce the on-site carbon dioxide emissions by 28.1 % (or 17.3 % of the emissions from the whole industry). For reference, torrefied material and raw biomass can reduce the on-site emissions by 6.4 % and 5.7 % respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy