SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mendonça João M.) "

Sökning: WFRF:(Mendonça João M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bell, Taylor, et al. (författare)
  • Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.
  •  
2.
  • Almeida, Rafael M., et al. (författare)
  • Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming
  • 2015
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 5:3, s. 275-282
  • Tidskriftsartikel (refereegranskat)abstract
    • Originating in the Bolivian and Peruvian Andes, the Madeira River is the largest tributary of the Amazon River in terms of discharge. Andean rivers transport large quantities of nutrient-rich suspended sediments and are the main source of phosphorus (P) to the Amazon basin. Here, we show the seasonal variability in concentrations and loads of different P forms (total, particulate, dissolved, and soluble reactive P) in the Madeira River through 8 field campaigns between 2009 and 2011. At our sampling reach in Porto Velho, Brazil, the Madeira River transports similar to 177-247 Gg yr(-1) of P, mostly linked to particles (similar to 85%). Concentrations and loads of all P forms have a maximum at rising waters and a minimum at low waters. Total P concentrations were substantially higher at a given discharge at rising water than at a similar discharge at falling water. The peak of P concentrations matched the peak of rainfall in the upper basin, suggesting an influence of precipitation-driven erosion. Projected precipitation increase in the eastern slopes of the Andes could enhance sediment yield and hence the P transport in the Madeira River. Because most of the P is particulate, however, we hypothesize that the planned proliferation of hydropower dams in the Madeira basin has the potential to reduce P loads substantially, possibly counteracting any precipitation-related increases. In the long term, this could be detrimental to highly productive downstream floodplain forests that are seasonally fertilized with P-rich deposits.
  •  
3.
  •  
4.
  • Bello-Arufe, Aaron, et al. (författare)
  • Exoplanet atmospheres at high resolution through a modest-size telescope : FeII in MASCARA-2b and KELT-9b with FIES on the Nordic Optical Telescope
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based, high-resolution spectrographs are providing us with an unprecedented view of the dynamics and chemistry of the atmospheres of planets outside the Solar System. While there are a large number of stable and precise high-resolution spectrographs on modest-size telescopes, it is the spectrographs at observatories with apertures larger than 3.5 m that dominate the atmospheric follow-up of exoplanets. In this work we explore the potential of characterising exoplanetary atmospheres with FIES, a high-resolution spectrograph at the 2.56 m Nordic Optical Telescope. We observed two transits of MASCARA-2 b (also known as KELT-20 b) and one transit of KELT-9 b to search for atomic iron, a species that has recently been discovered in both neutral and ionised forms in the atmospheres of these ultra-hot Jupiters using large telescopes. Using a cross-correlation method, we detect a signal of FeII at the 4.5and 4.0level in the transits of MaSCARA-2 b. We also detect FeII in the transit of KELT-9 b at the 8.5level. Although we do not find any significant Doppler shift in the signal of MASCARA-2 b, we do measure a moderate blueshift (3a-6 km s1) of the feature in KELT-9 b, which might be a manifestation of high-velocity winds transporting FeII from the planetary dayside to the nightside. Our work demonstrates the feasibility of investigating exoplanet atmospheres with FIES, and it potentially unlocks a wealth of additional atmosphere detections with this and other high-resolution spectrographs mounted on similar-size telescopes.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy