SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Menzel Marion I.) "

Sökning: WFRF:(Menzel Marion I.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Endt, Sebastian, et al. (författare)
  • In Vivo Myelin Water Quantification Using Diffusion–Relaxation Correlation MRI : A Comparison of 1D and 2D Methods
  • 2023
  • Ingår i: Applied Magnetic Resonance. - 0937-9347. ; 54:11-12, s. 1571-1588
  • Tidskriftsartikel (refereegranskat)abstract
    • Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion–relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. Whilst 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.
  •  
2.
  • Kaushik, Sandeep S., et al. (författare)
  • Region of interest focused MRI to synthetic CT translation using regression and segmentation multi-task network
  • 2023
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics (IOP). - 0031-9155 .- 1361-6560. ; 68:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: In MR-only clinical workflow, replacing CT with MR image is of advantage for workflow efficiency and reduces radiation to the patient. An important step required to eliminate CT scan from the workflow is to generate the information provided by CT via an MR image. In this work, we aim to demonstrate a method to generate accurate synthetic CT (sCT) from an MR image to suit the radiation therapy (RT) treatment planning workflow. We show the feasibility of the method and make way for a broader clinical evaluation.Approach: We present a machine learning method for sCT generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. The misestimation of bone density in the radiation path could lead to unintended dose delivery to the target volume and results in suboptimal treatment outcome. We propose a loss function that favors a spatially sparse bone region in the image. We harness the ability of the multi-task network to produce correlated outputs as a framework to enable localization of region of interest (RoI) via segmentation, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task.Main results: We have included 54 brain patient images in this study and tested the sCT images against reference CT on a subset of 20 cases. A pilot dose evaluation was performed on 9 of the 20 test cases to demonstrate the viability of the generated sCT in RT planning. The average quantitative metrics produced by the proposed method over the test set were-(a) mean absolute error (MAE) of 70 ± 8.6 HU; (b) peak signal-to-noise ratio (PSNR) of 29.4 ± 2.8 dB; structural similarity metric (SSIM) of 0.95 ± 0.02; and (d) Dice coefficient of the body region of 0.984 ± 0.Significance: We demonstrate that the proposed method generates sCT images that resemble visual characteristics of a real CT image and has a quantitative accuracy that suits RT dose planning application. We compare the dose calculation from the proposed sCT and the real CT in a radiation therapy treatment planning setup and show that sCT based planning falls within 0.5% target dose error. The method presented here with an initial dose evaluation makes an encouraging precursor to a broader clinical evaluation of sCT based RT planning on different anatomical regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy