SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mesa Antunez Pablo) "

Sökning: WFRF:(Mesa Antunez Pablo)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Arseneault, Mathieu, et al. (författare)
  • The Dawn of Thiol-Yne Triazine Triones Thermosets as a New Material Platform Suited for Hard Tissue Repair
  • 2018
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 30:52
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.
  •  
3.
  • Garcia-Gallego, Sandra, et al. (författare)
  • Synthesis of Heterofunctional Polyester Dendrimers with Internal and External Functionalities as Versatile Multipurpose Platforms
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:10, s. 4273-4279
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterofunctional dendrimers with internal and external representations of functionalities are considered as the ultimate dendritic frameworks. This is reflected by their unprecedented scaffolding, such as precise control over the structure, molecular weight, number, and location of different cargos across the whole dendritic skeleton. Consequently, these dendrimers with multipurpose characters are the pinnacle of precision polymers and thereof are highly attractive to the scientific community as they can find use in a great number of cutting-edge applications, especially as discrete unimolecular carriers for therapeutic exploitation. Unfortunately, most established dendrimer families display external functionalities but lack internal scaffolding ability, which leads to inherent limitations to their full potential use as precision carriers. Consequently, here, we embark on a novel synthetic strategy facilitating the introduction of internal functionalization of established dendrimers. As a proof of concept, a new class of internally and externally functionalized multipurpose dendrimers based on the established 2,2-bis(methylol)propionic acid (bis-MPA) was successfully obtained by the elegant and simple design of AB2C monomers, amalgamated from two traditional AB2 monomers. Utilizing fluoride-promoted esterification (FPE), straightforward layer-by-layer divergent growth up to the fourth generation was successful in less than one day of reaction time, with a molecular weight of 15 kDa, and displaying 93 reactive groups divided by 45 internal and 48 external functionalities. The feasibility of postfunctionalization through click reactions is demonstrated, where the fast and effective attachment of drugs, dyes, and PEG chains is achieved, as well as cross-linking into multifunctional hydrogels. The simplicity and versatility of the presented strategy can easily be transferred to generate a myriad of functional materials such as polymers, surfaces, nanoparticles, or biomolecules.
  •  
4.
  •  
5.
  • Martin-Serrano Ortiz, Angela, et al. (författare)
  • Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules
  • 2018
  • Ingår i: Journal of Polymer Science Part A. - : WILEY. - 0887-624X .- 1099-0518. ; 56:15, s. 1609-1616
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, the synthesis and characterization of orthogonal dendrons decorated with multiple units of fluorescent and a chemoselective group at a focal point, followed by specific antibody labeling, is presented. Fluorescence results confirm the applicability of the fluorescent probes for biomolecule labeling and fluorescent signal amplification.
  •  
6.
  • Zhang, Yuning, et al. (författare)
  • Degradable High Molecular Weight Monodisperse Dendritic Poly(ethylene glycols)
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:10, s. 4294-4301
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(ethylene glycols) (PEGs) are extensively explored by the pharma industry as foundations for new therapeutic products. PEGs are typically used for their conjugation to active drugs, peptides, and proteins and the likeliness to increase the half-life and enhance the therapeutic outcome. Considering the necessity of batch-to-batch consistency for clinical products, monodisperse PEGs are highly attractive but are generally limited to 5 kDa as an upper molecular weight (Mw) and with an oligomer purity of 95%. By amalgamating short, monodisperse PEGs with dendritic frameworks based on 2,2-bis(methylol)propionic acid polyesters, we showcase a robust synthetic approach to monodisperse PEGs with Mw ranging from 2 to 65 kDa. The latter is, to our knowledge, the highest Mw structure of its kind ever reported. Importantly, the dendritic multifunctional connector facilitated degradability at pH 7.4 at 37 °C, which is an important feature for the delivery of therapeutic agents.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy