SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Messinger Johannes 1963 ) "

Sökning: WFRF:(Messinger Johannes 1963 )

  • Resultat 1-10 av 91
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keable, Stephen M., et al. (författare)
  • Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.
  •  
2.
  • Bag, Pushan, 1993-, et al. (författare)
  • Flavodiiron-mediated O2 photoreduction at photosystem I acceptor-side provides photoprotection to conifer thylakoids in early spring
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Green organisms evolve oxygen (O2) via photosynthesis and consume it by respiration. Generally, net O2 consumption only becomes dominant when photosynthesis is suppressed at night. Here, we show that green thylakoid membranes of Scots pine (Pinus sylvestris L) and Norway spruce (Picea abies) needles display strong O2 consumption even in the presence of light when extremely low temperatures coincide with high solar irradiation during early spring (ES). By employing different electron transport chain inhibitors, we show that this unusual light-induced O2 consumption occurs around photosystem (PS) I and correlates with higher abundance of flavodiiron (Flv) A protein in ES thylakoids. With P700 absorption changes, we demonstrate that electron scavenging from the acceptor-side of PSI via O2 photoreduction is a major alternative pathway in ES. This photoprotection mechanism in vascular plants indicates that conifers have developed an adaptative evolution trajectory for growing in harsh environments.
  •  
3.
  •  
4.
  • Bergmann, U, et al. (författare)
  • High-resolution X-ray spectroscopy of rare events : a different look at local structure and chemistry
  • 2001
  • Ingår i: Journal of Synchrotron Radiation. - Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. : MUNKSGAARD INT PUBL LTD. - 0909-0495 .- 1600-5775. ; 8, s. 199-203
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal K beta fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the K beta spectrum resulting from valence-level and 'interatomic' ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard ( 10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed.
  •  
5.
  • Bhowmick, Asmit, et al. (författare)
  • Going around the Kok cycle of the water oxidation reaction with femtosecond X-ray crystallography
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10:6, s. 642-655
  • Forskningsöversikt (refereegranskat)abstract
    • The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.
  •  
6.
  • Bhowmick, Asmit, et al. (författare)
  • Structural evidence for intermediates during O2 formation in photosystem II
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 629-636
  • Tidskriftsartikel (refereegranskat)abstract
    • In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O–O bond formation chemistry. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok’s photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok’s water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition, disappears or relocates in parallel with Yz reduction starting at approximately 700 μs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1–Mn4 distance, occurs at around 1,200 μs, signifying the presence of a reduced intermediate, possibly a bound peroxide.
  •  
7.
  • Boniolo, Manuel, et al. (författare)
  • Water Oxidation by Pentapyridyl Base Metal Complexes? : A Case Study
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:24, s. 9104-9118
  • Tidskriftsartikel (refereegranskat)abstract
    • The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O–O bond formation, and O2 release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82– system at pH 8.0, but that activity is demonstrated to arise from the rapid degradation in the buffered solution leading to the formation of catalytically active amorphous iron oxide/hydroxide (FeOOH), which subsequently lost the catalytic activity by forming more extensive and structured FeOOH species. The detailed analysis of the redox and water-binding properties employing electrochemistry, X-ray absorption spectroscopy (XAS), UV–vis spectroscopy, and density-functional theory (DFT) showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable amount of a MIV state in our potential window (up to +2 V vs SHE). This inability was traced to (i) the preference for binding Cl– or acetonitrile instead of water-derived species in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs are suggested.
  •  
8.
  • Britt, R D, et al. (författare)
  • Recent pulsed EPR studies of the Photosystem II oxygen-evolving complex : implications as to water oxidation mechanisms
  • 2004
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Melvin Calvin Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. : ELSEVIER. - 0005-2728 .- 1879-2650. ; 1655:1-3, s. 158-171
  • Tidskriftsartikel (refereegranskat)abstract
    • The pulsed electron paramagnetic resonance (EPR) methods of electron spin echo envelope modulation (ESEEM) and electron spill echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the structure of the Photosystem II oxygen-evolving complex (OEC), including the paramagnetic manganese cluster and its immediate surroundings. Recent unpublished results from the pulsed EPR laboratory at UC-Davis are discussed, along with aspects of recent publications, with a focus on substrate and cofactor interactions. New data on the proximity of exchangeable deuterons around the Mn cluster poised in the So-state are presented and interpreted. These pulsed EPR results are used in an evaluation of several recently proposed mechanisms for PSII water oxidation. We strongly favor mechanistic models where the substrate waters bind within the OEC early in the S-state cycle. Models in which the O-O bond is formed by a nucleophilic attack by a Ca2+-bound water on a strong S-4-state electrophile provide a good match to the pulsed EPR data. (C) 2004 Elsevier B.V. All rights reserved.
  •  
9.
  • Chatterjee, Ruchira, et al. (författare)
  • XANES and EXAFS of dilute solutions of transition metals at XFELs
  • 2019
  • Ingår i: Journal of Synchrotron Radiation. - : INT UNION CRYSTALLOGRAPHY. - 0909-0495 .- 1600-5775. ; 26, s. 1716-1724
  • Tidskriftsartikel (refereegranskat)abstract
    • This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.
  •  
10.
  • Cinco, R M, et al. (författare)
  • Orientation of calcium in the Mn4Ca cluster of the oxygen-evolving complex determined using polarized strontium EXAFS of photosystem II membranes
  • 2004
  • Ingår i: Biochemistry. - Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Melvin Calvin Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. : AMER CHEMICAL SOC. - 0006-2960 .- 1520-4995. ; 43:42, s. 13271-13282
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current Study using polarized Sr EXAFS on oriented Sr-reactivated samples shows that Fourier peak II, which fits best to Mn at 3.5 Angstrom rather than lighter atoms (C, N, O, or Cl), is dichroic, with a larger magnitude at 10degrees (angle between the PS II membrane normal and the X-ray electric field vector) and a smaller magnitude at 80degrees. Analysis of the dichroism of the Sr EXAFS yields a lower and upper limit of 0degrees and 23degrees for the average angle between the Sr-Mn vectors and the membrane normal and an isotropic coordination number (number of Mn neighbors to Sr) of 1 or 2 for these layered PS II samples. The results confirm the contention that Ca (Sr) is proximal to the Mn cluster and lead to refined working models of the heteronuclear Mn4Ca cluster of the oxygen-evolving complex in PS II.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 91
Typ av publikation
tidskriftsartikel (73)
konferensbidrag (10)
forskningsöversikt (4)
bokkapitel (2)
annan publikation (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (14)
populärvet., debatt m.m. (1)
Författare/redaktör
Messinger, Johannes, ... (78)
Yano, Junko (15)
Yachandra, Vittal K. (14)
Kern, Jan (13)
Zouni, Athina (12)
Bergmann, Uwe (10)
visa fler...
Sauer, K (10)
Chernev, Petko (9)
Yachandra, V. K. (9)
Cheah, Mun Hon (9)
Hussein, Rana (9)
Chatterjee, Ruchira (9)
Ibrahim, Mohamed (8)
Robblee, J H (8)
Simon, Philipp S. (8)
Bogacz, Isabel (8)
Fernández, C (7)
Alonso-Mori, Roberto (7)
Shevela, Dmitriy (7)
Lubitz, Wolfgang (6)
Bergmann, U. (6)
Glatzel, P (6)
Klein, M P (6)
Bhowmick, Asmit (6)
Makita, Hiroki (6)
Fuller, Franklin D. (6)
Fransson, Thomas (6)
Dobbek, Holger (6)
Gul, Sheraz (6)
Brewster, Aaron S. (5)
Zhang, Miao (5)
Kim, In-Sik (5)
Batyuk, Alexander (5)
Lubitz, W (4)
Sauter, Nicholas K. (4)
Pushkar, Yulia (4)
Visser, H (4)
Cramer, S P (4)
Weninger, Clemens (4)
Doyle, Margaret D. (4)
Schröder*, Wolfgang ... (3)
Cox, Nicholas (3)
Tono, Kensuke (3)
Shevela, Dmitriy, 19 ... (3)
Brudvig, G. (3)
Owada, Shigeki (3)
Moriarty, Nigel W. (3)
Britz, Alexander (3)
Fuller, Franklin (3)
Britt, R D (3)
visa färre...
Lärosäte
Uppsala universitet (84)
Umeå universitet (33)
Kungliga Tekniska Högskolan (4)
Stockholms universitet (1)
Lunds universitet (1)
Språk
Engelska (91)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (90)
Teknik (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy