SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Metodiev Metodi D) "

Sökning: WFRF:(Metodiev Metodi D)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koeck, Thomas, et al. (författare)
  • A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes.
  • 2011
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 13:1, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) evolves when insulin secretion fails. Insulin release from the pancreatic β cell is controlled by mitochondrial metabolism, which translates fluctuations in blood glucose into metabolic coupling signals. We identified a common variant (rs950994) in the human transcription factor B1 mitochondrial (TFB1M) gene associated with reduced insulin secretion, elevated postprandial glucose levels, and future risk of T2D. Because islet TFB1M mRNA levels were lower in carriers of the risk allele and correlated with insulin secretion, we examined mice heterozygous for Tfb1m deficiency. These mice displayed lower expression of TFB1M in islets and impaired mitochondrial function and released less insulin in response to glucose in vivo and in vitro. Reducing TFB1M mRNA and protein in clonal β cells by RNA interference impaired complexes of the mitochondrial oxidative phosphorylation system. Consequently, nutrient-stimulated ATP generation was reduced, leading to perturbed insulin secretion. We conclude that a deficiency in TFB1M and impaired mitochondrial function contribute to the pathogenesis of T2D.
  •  
2.
  • Ruzzenente, Benedetta, et al. (författare)
  • LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs.
  • 2012
  • Ingår i: The EMBO journal. - : Wiley. - 1460-2075 .- 0261-4189. ; 31:2, s. 443-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine-rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino-acid substitution of this protein causes the French-Canadian type of Leigh syndrome (LSFC), a neurodegenerative disorder characterized by complex IV deficiency. We have generated conditional Lrpprc knockout mice and show here that the gene is essential for embryonic development. Tissue-specific disruption of Lrpprc in heart causes mitochondrial cardiomyopathy with drastic reduction in steady-state levels of most mitochondrial mRNAs. LRPPRC forms an RNA-dependent protein complex that is necessary for maintaining a pool of non-translated mRNAs in mammalian mitochondria. Loss of LRPPRC does not only decrease mRNA stability, but also leads to loss of mRNA polyadenylation and the appearance of aberrant mitochondrial translation. The translation pattern without the presence of LRPPRC is misregulated with excessive translation of some transcripts and no translation of others. Our findings point to the existence of an elaborate machinery that regulates mammalian mtDNA expression at the post-transcriptional level.
  •  
3.
  • Sharoyko, Vladimir, et al. (författare)
  • Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes.
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:21, s. 5733-5749
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously identified Transcription Factor B1 Mitochondrial (TFB1M) as a Type 2 Diabetes (T2D) risk gene, using human and mouse genetics. To further understand the function of TFB1M and how it is associated with T2D we created a β-cell specific knockout of Tfb1 m, which gradually developed diabetes. Prior to the onset of diabetes, β-Tfb1 m(-/-) mice exhibited retarded glucose clearance due to impaired insulin secretion. β-Tfb1 m(-/-) islets released less insulin in response to fuels, contained less insulin and secretory granules, and displayed reduced β-cell mass. Moreover, mitochondria in Tfb1 m-deficient β-cells were more abundant with disrupted architecture. TFB1M is known to control mitochondrial protein translation by adenine-dimethylation of 12S ribosomal RNA (rRNA). Here, we found that levels of TFB1M and mitochondrial encoded proteins, mitochondrial 12S rRNA methylation, ATP production and oxygen consumption were reduced in β-Tfb1 m(-/-) islets. Furthermore, levels of reactive oxygen species in response to cellular stress were increased while induction of defense mechanisms was attenuated. We also show increased apoptosis and necrosis as well as infiltration of macrophages and CD4(+)-cells in the islets. Taken together, our findings demonstrate that Tfb1 m-deficiency in β-cells caused mitochondrial dysfunction and subsequently diabetes due to combined loss of β-cell function and mass. These observations reflect pathogenetic processes in human islets: using RNA sequencing, we found that the TFB1M risk variant exhibited a negative gene-dosage effect on islet TFB1M mRNA levels, as well as insulin secretion. Our findings highlight the role of mitochondrial dysfunction in impairments of β-cell function and mass, the hallmarks of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy