SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Metson R) "

Sökning: WFRF:(Metson R)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Harder, Robin, et al. (författare)
  • Egestabase – An online evidence platform to discover and explore options to recover plant nutrients from human excreta and domestic wastewater for reuse in agriculture
  • 2024
  • Ingår i: MethodsX. - : Elsevier B.V.. - 1258-780X .- 2215-0161. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Restoring nutrient circularity across scales is important for ecosystem integrity as well as nutrient and food security. As such, research and development of technologies to recover plant nutrients from various organic residues has intensified. Yet, this emerging field is diverse and difficult to navigate, especially for newcomers. As an increasing number of actors search for circular solutions to nutrient management, there is a need to simplify access to the latest knowledge. Since the majority of nutrients entering urban areas end up in human excreta, we have chosen to focus on human excreta and domestic wastewater. Through systematic mapping with stakeholder engagement, we compiled and consolidated available evidence from research and practice. In this paper, we present ‘Egestabase’ – a carefully curated open-access online evidence platform that presents this evidence base in a systematic and accessible manner. We hope that this online evidence platform helps a variety of actors to navigate evidence on circular nutrient solutions for human excreta and domestic wastewater with ease and keep track of new findings. 
  •  
3.
  • Metson, Genevieve, 1988-, et al. (författare)
  • Phosphorus in Phoenix : a budget and spatial representation of phosphorus in an urban ecosystem
  • 2012
  • Ingår i: Ecological Applications. - : John Wiley & Sons. - 1051-0761 .- 1939-5582. ; 22:2, s. 705-721
  • Tidskriftsartikel (refereegranskat)abstract
    • As urban environments dominate the landscape, we need to examine how limiting nutrients such as phosphorus (P) cycle in these novel ecosystems. Sustainable management of P resources is necessary to ensure global food security and to minimize freshwater pollution. We used a spatially explicit budget to quantify the pools and fluxes of P in the Greater Phoenix Area in Arizona, USA, using the boundaries of the Central Arizonaï¿œPhoenix Long-Term Ecological Research site. Inputs were dominated by direct imports of food and fertilizer for local agriculture, while most outputs were small, including water, crops, and material destined for recycling. Internally, fluxes were dominated by transfers of food and feed from local agriculture and the recycling of human and animal excretion. Spatial correction of P dynamics across the city showed that human density and associated infrastructure, especially asphalt, dominated the distribution of P pools across the landscape. Phosphorus fluxes were dominated by agricultural production, with agricultural soils accumulating P. Human features (infrastructure, technology, and waste management decisions) and biophysical characteristics (soil properties, water fluxes, and storage) mediated P dynamics in Phoenix. P cycling was most notably affected by water management practices that conserve and recycle water, preventing the loss of waterborne P from the ecosystem. P is not intentionally managed, and as a result, changes in land use and demographics, particularly increased urbanization and declining agriculture, may lead to increased losses of P from this system. We suggest that city managers should minimize cross-boundary fluxes of P to the city. Reduced P fluxes may be accomplished through more efficient recycling of waste, therefore decreasing dependence on external nonrenewable P resources and minimizing aquatic pollution. Our spatial approach and consideration of both pools and fluxes across a heterogeneous urban ecosystem increases the utility of nutrient budgets for city managers. Our budget explicitly links processes that affect P cycling across space with the management of other resources (e.g., water). A holistic management strategy that deliberately couples the management of P and other resources should be a priority for cities in achieving urban sustainability.
  •  
4.
  • Powers, S. M., et al. (författare)
  • Global Opportunities to Increase Agricultural Independence Through Phosphorus Recycling
  • 2019
  • Ingår i: Earth's Future. - : AMER GEOPHYSICAL UNION. - 2328-4277. ; 7:4, s. 370-383
  • Tidskriftsartikel (refereegranskat)abstract
    • Food production hinges largely upon access to phosphorus (P) fertilizer. Most fertilizer P used in the global agricultural system comes from mining of nonrenewable phosphate rock deposits located within few countries. However, P contained in livestock manure or urban wastes represents a recyclable source of P. To inform development of P recycling technologies and policies, we examined subnational, national, and global spatial patterns for two intersections of land use affording high P recycling potential: (a) manure-rich cultivated areas and (b) populous cultivated areas. In turn, we examined overlap between P recycling potential and nation-level P fertilizer import dependency. Populous cultivated areas were less abundant globally than manure-rich cultivated areas, reflecting greater segregation between crops and people compared to crops and livestock, especially in the Americas. Based on a global hexagonal grid (290-km(2) grid cell area), disproportionately large shares of subnational hot spots for P recycling potential occurred in India, China, Southeast Asia, Europe, and parts of Africa. Outside of China, most of the remaining manure-rich or pulous cultivated areas occurred within nations that had relatively high imports of P fertilizer (net P import:consumption ratios >= 0.4) or substantial increases in fertilizer demand between the 2000s (2002-2006) and 2010s (2010-2014). Manure-rich cultivated grid cells (those above the 75th percentiles for both manure and cropland extent) represented 12% of the global grid after excluding cropless cells. Annually, the global sum of animal manure P was at least 5 times that contained in human excreta, and among cultivated cells the ratio was frequently higher (median = 8.9). The abundance of potential P recycling hot spots within nations that have depended on fertilizer imports or experienced rising fertilizer demand could prove useful for developing local P sources and maintaining agricultural independence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy