SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meynaq Mohammad Yaser Khani) "

Sökning: WFRF:(Meynaq Mohammad Yaser Khani)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghbolagh, Mahdi Shahmohammadi, et al. (författare)
  • Aspects on mediated glucose oxidation at a supported cubic phase
  • 2017
  • Ingår i: Bioelectrochemistry. - : Elsevier. - 1567-5394 .- 1878-562X. ; 118, s. 8-13
  • Tidskriftsartikel (refereegranskat)abstract
    • A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15 degrees C and 30 degrees C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase.
  •  
2.
  •  
3.
  • Khani Meynaq, Mohammad Yaser, et al. (författare)
  • Cationic Interaction with Phosphatidylcholine in a lipid cubic phase studied with electrochemical impedance spectroscopy and Small Angle X-ray Scattering
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 528, s. 321-329
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis: Electrochemical Impedance Spectroscopy (EIS) can be used to investigate cationic interaction with the choline headgroup in the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/H2O).Experiments: EIS was used to estimate the resistance and capacitance of a freestanding membrane of a lipid cubic phase (LCP). The membrane was formed in a small cylindrical aperture separating two compartments, containing one Pt electrode each. The impedance experiments were carried out in a two electrode setup with electrolyte solutions made of KCl, CsCl, MgCl2 and CaCl2 filling the compartments at two different ionic strength. Small angle X-ray diffraction (SAXRD) was used to establish the structure and cell unit parameters of the LCP.Findings: The interpretation of ionic interaction with phosphatidylcholine was based on estimated membrane resistances and capacitances from EIS measurements. The magnitude of cationic interaction with the lipid headgroup in the water channels is correlated to the membrane resistance that increases in the order Cs+ < K+ < Mg2+ < Ca2+ following the Hofmeister direct series and also reflecting the order of intrinsic binding constants. The membrane capacitance and SAXRD results are discussed as an effect of cationic interaction and it was possible to observe both swelling and condensing effects. The stability of the cubic phase throughout the experiments was confirmed by SAXRD.
  •  
4.
  • Khani Meynaq, Mohammad Yaser, 1984- (författare)
  • Electrochemical investigations on lipid cubic phases
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Electrochemical Impedance Spectroscopy (EIS) was used to develop a novel methodology for studying ionic interaction with lipids arranged in a lipid cubic phase (LCP). Studying different types of ions, both cations and anions, validated the method. A free-standing LCP membrane was formed between two cell compartments and impedance experiments were carried out in a 2-electrode setup to estimate dielectric properties of the membrane, exposed to the following electrolyte solutions at different concentrations: KCl, CsBr, CaCl2, MgCl2, CsCl, NaCl, NaOAc and NaTryptophan. Two different LCP were used in this setup, i.e: Monoloein/water and the ternary system of monoolein/dioleoylphosphatidylcholine/water (MO/DOPC/H2O). SAXRD measurements were performed to determine the space group of the cubic phase and confirm the stability of the LCP during measurements.Membrane resistances and capacitances were found from equivalent circuit fitting to the impedance data. The membrane resistance was shown to be related to ionic interaction with the lipid head group in the water channels of the LCP. Membrane capacitance were correlating to condensing and swelling effect of LCP due to the exposure of ions. The results correlated well with the SAXRD results and earlier published data.The results also indicate that these membranes become less permeable to ions as they increase in size as well as in charge or polarity. Cyclic voltammetry was used to study the applications of a LCP for modification of the bioanode in a biofuel cell. The monoolein cubic phase was used to host Glucose oxidase (GOx) and a freely diffusing ferrocene carboxylate was used as mediator. The supported cubic phase had an intrinsic resistance in the same order of magnitude as the freestanding MO-LCP membrane as measured with EIS.
  •  
5.
  •  
6.
  • Khani Meynaq, Mohammad Yaser, et al. (författare)
  • Investigation of metal ion interaction with a lipid cubic phase using electrochemical impedance spectroscopy
  • 2016
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 482, s. 212-220
  • Tidskriftsartikel (refereegranskat)abstract
    • AbstractHypothesis Electrochemical impedance spectroscopy, EIS, can be used as a complementary technique to investigate ion interaction with the headgroup region in the aqueous channels of a lipid cubic phase, LCP. Experiments A freestanding membrane made of monoolein LCP was formed by filling a small aperture that separates two cell compartments. The cell compartments were filled with electrolyte solutions at two different ionic strengths: i.e.: 10 and 100 mM, of KCl, CsBr and CaCl2. Electrochemical impedance spectroscopy was recorded between two platinum electrodes that were present at each side of the membrane. Findings The membrane resistance and capacitance were estimated from equivalent circuit fitting of the impedance data. It was confirmed that calcium ions interacts strongly with the headgroup region in the aqueous channels giving significantly higher membrane resistances compared to monovalent alkali metal ions. The membrane capacitance with Ca2+(aq) in solution was concentration dependent, which for the first time indicates formation of two different cubic phases at these conditions.
  •  
7.
  • Meynaq, Mohammad Yaser Khani, et al. (författare)
  • Interaction of anions with lipid cubic phase membranes, an electrochemical impedance study
  • 2018
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 528, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypothesis: Electrochemical impedance spectroscopy is useful to monitor anionic interactions with a Lipid Cubic Phase, as previously demonstrated for cationic interaction (Khani Meynaq et al., 2016). It was expected that the smaller hydrophilic anions, acetate and chloride, would interact differently than the large tryptophan anion with its hydrophobic tail.Experiment: The impedance measurements enabled estimation of resistances and capacitances of a freestanding lipid cubic phase membrane at exposure to 4 and 40 mM solutions of NaCl, NaOAc and NaTrp. Small-angle X-ray scattering was used for cubic phase identification and to track structural changes within the cubic phase when exposed to the different electrolytes.Findings: The membrane resistance increases at exposure to the electrolytes in the order Cl− < OAc− < Trp−. The membrane resistance decreases with time at exposure to the hydrophilic anions and increases with time at Trp− exposure. The membrane capacitances were lower for NaTrp compared to NaCl and NaOAc at the corresponding concentrations which is consistent with the results from SAXRD. It is concluded that Trp− ions do not enter the aqueous channels of the cubic phase but are strongly adsorbed to the membrane/electrolyte interface leading to large alteration of the lipid phase structure and a high membrane resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy