SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meynet G.) "

Sökning: WFRF:(Meynet G.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belczynski, K., et al. (författare)
  • Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636:A&A
  • Tidskriftsartikel (refereegranskat)abstract
    • All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: A mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50âMâŠ. We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin-up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).
  •  
2.
  •  
3.
  •  
4.
  • Massey, Philip, et al. (författare)
  • RED SUPERGIANTS IN THE ANDROMEDA GALAXY (M31)
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 703:1, s. 420-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Red supergiants (RSGs) are a short-lived stage in the evolution of moderately massive stars (10-25 M-circle dot), and as such their location in the H-R diagram provides an exacting test of stellar evolutionary models. Since massive star evolution is strongly affected by the amount of mass loss a star suffers, and since the mass-loss rates depend upon metallicity, it is highly desirable to study the physical properties of these stars in galaxies of various metallicities. Here we identify a sample of RSGs in M31, the most metal-rich of the Local Group galaxies. We determine the physical properties of these stars using both moderate resolution spectroscopy and broadband V-K photometry. We find that on average the RSGs of our sample are variable in V by 0.5 mag, smaller but comparable to the 0.9 mag found for Magellanic Cloud (MC) RSGs. No such variability is seen at K, also in accord with what we know of Galactic and MC RSGs. We find that there is a saturation effect in the model TiO band strengths with metallicities higher than solar. The physical properties we derive for the RSGs from our analysis with stellar atmosphere models agree well with the current evolutionary tracks, a truly remarkable achievement given the complex physics involved in each. We do not confirm an earlier result that the upper luminosities of RSGs depend upon metallicity; instead, the most luminous RSGs have log L/L-circle dot similar to 5.2-5.3, broadly consistent but slightly larger than that recently observed by Smartt et al. as the upper luminosity limit to Type II-P supernovae, believed to have come from RSGs. We find that, on average, the RSGs are considerably more reddened than O and B stars, suggesting that circumstellar dust is adding a significant amount of extra extinction, similar to 0.5 mag, on average. This is in accord with our earlier findings on Milky Way and Magellanic Cloud stars. Finally, we call attention to a peculiar star whose spectrum appears to be heavily veiled, possibly due to scattering by an expanding dust shell.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy