SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meza Zepeda Leonardo A.) "

Sökning: WFRF:(Meza Zepeda Leonardo A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Malin A, et al. (författare)
  • Amplification of chromosome 1 sequences in lipomatous tumors and other sarcomas
  • 2004
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 109:3, s. 363-369
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplifications and gains involving 1q are common abnormalities in solid tumors. Recently, an amplicon originating from 1q21-23, containing the candidate oncogenes COAS1, COAS2 and COAS3 (Chromosome One Amplified Sequence) was identified. The presence, distribution and copy number level of extra COAS sequences were investigated in 48 bone and soft tissue tumor (BSTT) samples using metaphase FISH analysis. Amplification was seen in 27/48 (56%) samples. With few exceptions, all 3 genes were involved, but on average COAS2 exhibited higher copy numbers. The presence of extra COAS signals, irrespective of copy numbers, was found at similar frequencies in different histologic tumor subtypes. However, medium or high level amplification was common in lipomatous tumors but rare in other, nonlipomatous tumors (9/21 vs. 2/27 samples). The most common localization of extra COAS signals in lipomatous tumors was in supernumerary ring and giant marker chromosomes. Among nonlipomatous tumors, the distribution of extra COAS genes was more disperse, being located in various unidentified chromosomal structures, including double minutes, and only rarely in ring chromosomes. Because MDM2 is known to be amplified frequently in BSTTs, and in particular in atypical lipomatous tumors, cases with extra copies of COAS were studied also with an MDM2 probe. Twelve out of 18 lipomatous tumors had extra copies of both COAS and MDM2, and the 2 genes were found to be coamplified and interspersed exclusively in ring and giant marker chromosomes. Also 12 out of 18 nonlipomatous tumors exhibited simultaneous gain of COAS and MDM2, but colocalization in the same chromosome was less frequent. The role of the frequent coamplification of COAS, or some other yet unknown gene in the 1q21-23 region, and MDM2 remains to be elucidated.
  •  
2.
  • Kresse, Stine H., et al. (författare)
  • Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings: The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions: Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology. © 2012 Kresse et al.
  •  
3.
  • Kuijjer, Marieke L., et al. (författare)
  • Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data
  • 2012
  • Ingår i: Genes Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 51, s. 696-706
  • Tidskriftsartikel (refereegranskat)abstract
    • High-grade osteosarcoma is a tumor with a complex genomic profile, occurring primarily in adolescents with a second peak at middle age. The extensive genomic alterations obscure the identification of genes driving tumorigenesis during osteosarcoma development. To identify such driver genes, we integrated DNA copy number profiles (Affymetrix SNP 6.0) of 32 diagnostic biopsies with 84 expression profiles (Illumina Human-6 v2.0) of high-grade osteosarcoma as compared with its putative progenitor cells, i.e., mesenchymal stem cells (n = 12) or osteoblasts (n = 3). In addition, we performed paired analyses between copy number and expression profiles of a subset of 29 patients for which both DNA and mRNA profiles were available. Integrative analyses were performed in Nexus Copy Number software and statistical language R. Paired analyses were performed on all probes detecting significantly differentially expressed genes in corresponding LIMMA analyses. For both nonpaired and paired analyses, copy number aberration frequency was set to >35%. Nonpaired and paired integrative analyses resulted in 45 and 101 genes, respectively, which were present in both analyses using different control sets. Paired analyses detected >90% of all genes found with the corresponding nonpaired analyses. Remarkably, approximately twice as many genes as found in the corresponding nonpaired analyses were detected. Affected genes were intersected with differentially expressed genes in osteosarcoma cell lines, resulting in 31 new osteosarcoma driver genes. Cell division related genes, such as MCM4 and LATS2, were overrepresented and genomic instability was predictive for metastasis-free survival, suggesting that deregulation of the cell cycle is a driver of osteosarcomagenesis. © 2012 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy