SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mezouar Mohamed) "

Sökning: WFRF:(Mezouar Mohamed)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruening, Lukas, et al. (författare)
  • Stabilization of Guanidinate Anions [CN3]5− in Calcite-Type SbCN3
  • 2023
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 62:47
  • Tidskriftsartikel (refereegranskat)abstract
    • The stabilization of nitrogen-rich phases presents a significant chemical challenge due to the inherent stability of the dinitrogen molecule. This stabilization can be achieved by utilizing strong covalent bonds in complex anions with carbon, such as cyanide CN- and NCN(2- )carbodiimide, while more nitrogen-rich carbonitrides are hitherto unknown. Following a rational chemical design approach, we synthesized antimony guanidinate SbCN3 at pressures of 32-38 GPa using various synthetic routes in laser-heated diamond anvil cells. SbCN3, which is isostructural to calcite CaCO3, can be recovered under ambient conditions. Its structure contains the previously elusive guanidinate anion [CN3](5-), marking a fundamental milestone in carbonitride chemistry. The crystal structure of SbCN3 was solved and refined from synchrotron single-crystal X-ray diffraction data and was fully corroborated by theoretical calculations, which also predict that SbCN3 has a direct band gap with the value of 2.20 eV. This study opens a straightforward route to the entire new family of inorganic nitridocarbonates.
  •  
2.
  • Ceppatelli, Matteo, et al. (författare)
  • High-Pressure and High-Temperature Chemistry of Phosphorus and Nitrogen: Synthesis and Characterization of α- and γ-P3N5
  • 2022
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 61:31, s. 12165-12180
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct chemical reactivity between phosphorus and nitrogen was induced under high-pressure and high-temperature conditions (9.1 GPa and 2000-2500 K), generated by a laser-heated diamond anvil cell and studied by synchrotron X-ray diffraction, Raman spectroscopy, and DFT calculations. alpha-P3N5 and gamma-P3N5 were identified as reaction products. The structural parameters and vibrational frequencies of gamma-P3N5 were characterized as a function of pressure during room-temperature compression and decompression to ambient conditions, determining the equation of state of the material up to 32.6 GPa and providing insight about the lattice dynamics of the unit cell during compression, which essentially proceeds through the rotation of the PN5 square pyramids and the distortion of the PN4 tetrahedra. Although the identification of alpha-P3N5 demonstrates for the first time the direct synthesis of this compound from the elements, its detection in the outer regions of the laser-heated area suggests alpha-P3N5 as an intermediate step in the progressive nitridation of phosphorus toward the formation of gamma-P3N5 with increasing coordination number of P by N from 4 to 5. No evidence of a higher-pressure phase transition was observed, excluding the existence of predicted structures containing octahedrally hexacoordinated P atoms in the investigated pressure range.
  •  
3.
  • Errandonea, Daniel, et al. (författare)
  • Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature
  • 2020
  • Ingår i: COMMUNICATIONS MATERIALS. - : Springer Nature. - 2662-4443. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to other body-centered cubic (bcc) transition metals, Nb has been the subject of fewer compression studies and there are still aspects of its phase diagram which are unclear. Here, we report a combined theoretical and experimental study of Nb under high pressure and temperature. We present the results of static laser-heated diamond anvil cell experiments up to 120 GPa using synchrotron-based fast x-ray diffraction combined with ab initio quantum molecular dynamics simulations. The melting curve of Nb is determined and evidence for a solid-solid phase transformation in Nb with increasing temperature is found. The high-temperature phase of Nb is orthorhombic Pnma. The bcc-Pnma transition is clearly seen in the experimental data on the Nb principal Hugoniot. The bcc-Pnma coexistence observed in our experiments is explained. Agreement between the measured and calculated melting curves is very good except at 40-60 GPa where three experimental points lie below the theoretical melting curve by 250 K (or 7%); a possible explanation is given. The study of materials under extreme conditions can reveal interesting physics in diverse areas such as condensed matter and geophysics. Here, the authors investigate experimentally and theoretically the high pressure-high temperature phase diagram of niobium revealing a previously unobserved phase transition from body-centered cubic to orthorhombic phase.
  •  
4.
  • Koller, Thaddaeus J., et al. (författare)
  • Simple Molecules under High-Pressure and High-Temperature Conditions: Synthesis and Characterization of α- and β-C(NH)2 with Fully sp3-Hybridized Carbon
  • 2024
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773.
  • Tidskriftsartikel (refereegranskat)abstract
    • The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2C(CN)(2), dicyandiamide (H2N)(2)C=NCN, and melamine (C3N3)(NH2)(3) was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely alpha-C(NH)(2) and beta-C(NH)(2), have been synthesized and found to have fully sp(3)-hybridized carbon atoms. alpha-C(NH)(2) crystallizes in a distorted beta-cristobalite structure, while beta-C(NH)(2) is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.
  •  
5.
  •  
6.
  • Yao, Mingguang, et al. (författare)
  • Pressure-induced transformation in Na4C60 polymer: X-ray diffraction and Raman scattering experiments
  • 2011
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 84:14, s. 144106-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article the alkali metal-intercalated two-dimensional (2D) polymer Na4C60 is studied under pressure up to 41 GPa at room temperature by Raman spectroscopy and x-ray diffraction (XRD) measurements. Two transitions are identified in the studied pressure range. The first one is observed at ∼3 GPa by both diffraction and Raman scattering. A kink in the pressure slope of the cell parameters (especially along the c axis) shows the appearance of a less compressible phase. The decrease in the C60-C60 distance and the Na-C distance, combined with the frequency softening of the Raman modes, leads to a picture of higher electron hopping. The second transition occurs at around 15 GPa, where the distinct Raman peaks of 2D-Na4C60 disappear and become very broad and diffuse. New bands at 200–800 cm−1, 1590 cm−1, and ∼1800 cm−1, exhibit similar features to those of a reported 3D-C60 polymeric structure. The XRD data show that the cell parameters a, b, and c deviate from their early pressure evolution and become almost pressure independent, accompanied by the formation of amorphous material. Both the evolution of the Raman features of Na4C60 at pressures above 15 GPa and the Raman measurements of the samples on decompression indicate that most C60 molecules in the material are preserved after such a high pressure cycle. Our findings are discussed in terms of the formation of the first high-pressure intercalated C60 3D-polymer structure through the random creation of new polymeric bonds between fullerene molecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy