SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Micera Silvestro) "

Sökning: WFRF:(Micera Silvestro)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crema, Andrea, et al. (författare)
  • A Wearable Multi-Site System for NMES-Based Hand Function Restoration
  • 2018
  • Ingår i: IEEE Transactions on Neural Systems and Rehabilitation Engineering. - 1534-4320. ; 26:2, s. 428-440
  • Tidskriftsartikel (refereegranskat)abstract
    • Reaching and grasping impairments significantly affect the quality of life for people who have experienced a stroke or spinal cord injury. The long-term well-being of patients varies greatly according to the restorable residual capabilities. Electrical stimulation could be a promising solution to restore motor functions in these conditions, but its use is not clinically widespread. Here, we introduce the HandNMES, an electrode array (EA) for neuromuscular electrical stimulation (NMES) aimed at grasp training and assistance. The device was designed to deliver electrical stimulation to extrinsic and intrinsic hand muscles. Six independent EAs, positioned on the user forearm and hand, deliver NMES pulses originating from an external stimulator equipped with demultiplexers for interfacing with a large number of electrodes. The garment was designed to be adaptable to user needs and anthropometric characteristics; size, shape, and contact materials can be customized, and stimulation characteristics such as intensity of stimulation and virtual electrode location, and size can be adjusted. We performed extensive tests with nine healthy subjects showing the efficacy of the HandNMES in terms of stimulation performance and personalization. Because encouraging results were achieved, in the coming months, the HandNMES device will be tested in pilot clinical trials.
  •  
2.
  • Crema, Andrea, et al. (författare)
  • Helping Hand grasp rehabilitation : Preliminary assessment on chronic stroke patients
  • 2017
  • Ingår i: 8th International IEEE EMBS Conference on Neural Engineering, NER 2017. - 9781538619162 ; , s. 146-149
  • Konferensbidrag (refereegranskat)abstract
    • The Helping Hand (HH) system is a novel grasp rehabilitation platform aimed at simplifying the clinical usage of wearable electrode arrays for neuromuscular electrical stimulation (NMES). In a randomized dose-matched, clinical study we evaluate usability and effectiveness of the HH treatment, and of other enriched upper limb rehabilitation treatments, and compare the outcomes. This paper shows the preliminary clinical results of the trial on 5 chronic stroke patients throughout a 9 weeks, 3 hours per week, hand preshaping training.
  •  
3.
  • Genna, Clara, et al. (författare)
  • Bilateral tactile input patterns decoded at comparable levels but different time scales in neocortical neurons
  • 2018
  • Ingår i: The Journal of Neuroscience. - 0270-6474. ; 38:15, s. 3669-3679
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of contralateral tactile input can profoundly affect ipsilateral tactile perception, and unilateral stroke in somatosensory areas can result in bilateral tactile deficits, suggesting that bilateral tactile integration is an important part of brain function. Although previous studies have shown that bilateral tactile inputs exist and that there are neural interactions between inputs from the two sides, no previous study explored to what extent the local neuronal circuitry processing contains detailed information about the nature of the tactile input from the two sides. To address this question, we used a recently introduced approach to deliver a set of electrical, reproducible, tactile afferent, spatiotemporal activation patterns, which permits a high-resolution analysis of the neuronal decoding capacity, to the skin of the second forepaw digits of the anesthetized male rat. Surprisingly, we found that individual neurons of the primary somatosensory can decode contralateral and ipsilateral input patterns to comparable extents. Although the contralateral input was stronger and more rapidly decoded, given sufficient poststimulus processing time, ipsilateral decoding levels essentially caught up to contralateral levels. Moreover, there was a weak but significant correlation for neurons with high decoding performance for contralateral tactile input to also perform well on decoding ipsilateral input. Our findings shed new light on the brain mechanisms underlying bimanual haptic integration.
  •  
4.
  • Genna, Clara, et al. (författare)
  • Spatiotemporal Dynamics of the Cortical Responses Induced by a Prolonged Tactile Stimulation of the Human Fingertips
  • 2017
  • Ingår i: Brain Topography. - : Springer Science and Business Media LLC. - 0896-0267 .- 1573-6792. ; 30:4, s. 473-485
  • Tidskriftsartikel (refereegranskat)abstract
    • The sense of touch is fundamental for daily behavior. The aim of this work is to understand the neural network responsible for touch processing during a prolonged tactile stimulation, delivered by means of a mechatronic platform by passively sliding a ridged surface under the subject’s fingertip while recording the electroencephalogram (EEG). We then analyzed: (i) the temporal features of the Somatosensory Evoked Potentials and their topographical distribution bilaterally across the cortex; (ii) the associated temporal modulation of the EEG frequency bands. Long-latency SEP were identified with the following physiological sequence P100—N140—P240. P100 and N140 were bilateral potentials with higher amplitude in the contralateral hemisphere and with delayed latency in the ipsilateral side. Moreover, we found a late potential elicited around 200 ms after the stimulation was stopped, which likely encoded the end of tactile input. The analysis of cortical oscillations indicated an initial increase in the power of theta band (4–7 Hz) for 500 ms after the stimulus onset followed a decrease in the power of the alpha band (8–15 Hz) that lasted for the remainder of stimulation. This decrease was prominent in the somatosensory cortex and equally distributed in both contralateral and ipsilateral hemispheres. This study shows that prolonged stimulation of the human fingertip engages the cortex in widespread bilateral processing of tactile information, with different modulations of the theta and alpha bands across time.
  •  
5.
  • Oddo, Calogero M., et al. (författare)
  • Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra-and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy