SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Michaelsson M) "

Search: WFRF:(Michaelsson M)

  • Result 1-10 of 101
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zillikens, M. C., et al. (author)
  • Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.
  •  
2.
  • Karasik, D., et al. (author)
  • Disentangling the genetics of lean mass
  • 2019
  • In: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 109:2, s. 276-287
  • Journal article (peer-reviewed)abstract
    • Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age(2), and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LMwere termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.
  •  
3.
  • Jiang, X., et al. (author)
  • Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7x10(-9) at rs8018720 in SEC23A, and P = 1.9x10(-14) at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.
  •  
4.
  • Lu, Yingchang, et al. (author)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Medina, LMP, et al. (author)
  • Targeted plasma proteomics reveals signatures discriminating COVID-19 from sepsis with pneumonia
  • 2023
  • In: Respiratory research. - : Springer Science and Business Media LLC. - 1465-993X. ; 24:1, s. 62-
  • Journal article (peer-reviewed)abstract
    • BackgroundCOVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features.MethodsWe measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients.ResultsWe identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers.ConclusionsThis study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 101
Type of publication
journal article (82)
conference paper (16)
other publication (2)
research review (1)
Type of content
peer-reviewed (80)
other academic/artistic (21)
Author/Editor
Michaëlsson, Karl, 1 ... (36)
Michaelsson, J (26)
Lind, Lars (16)
Ljunggren, HG (14)
Michaëlsson, Karl (14)
Marquardt, N (12)
show more...
Ohlsson, Claes, 1965 (11)
Lorentzon, Mattias, ... (9)
Larsson, Susanna C. (9)
Melhus, Håkan (9)
Michaelsson, K (9)
Karlsson, Magnus (8)
Burgess, Stephen (8)
Vandenput, Liesbeth, ... (7)
Mellström, Dan, 1945 (7)
Byberg, Liisa (7)
Sandberg, JK (6)
Ingelsson, Erik (6)
Lind, L (6)
Buggert, M (5)
Klingstrom, J (5)
Wolk, Alicja (5)
Eriksson, Joel (5)
Al-Ameri, M (5)
Wilson, James F. (5)
Malmberg, KJ (5)
Rivadeneira, Fernand ... (5)
Lam, CSP (5)
Wareham, N. J. (4)
Bergman, P. (4)
Lund, LH (4)
Mallmin, Hans (4)
Ferrucci, L (4)
Lahti, J (4)
Lehtimaki, T. (4)
Rotter, J. I. (4)
Psaty, B. M. (4)
Campbell, H (4)
Rivadeneira, F (4)
Brownlie, D (4)
Tikkanen, E (4)
Gieger, C (4)
Salomaa, V (4)
Gustafsson, Stefan (4)
Hypponen, E (4)
Hsu, Y. H. (4)
Ljunghall, Sverker (4)
Ljunggren, Östen (4)
Mjosberg, J (4)
Power, C (4)
show less...
University
Karolinska Institutet (74)
Uppsala University (57)
University of Gothenburg (15)
Lund University (13)
Umeå University (6)
Royal Institute of Technology (4)
show more...
Örebro University (3)
Stockholm University (1)
Malmö University (1)
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (100)
Swedish (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (48)
Natural sciences (6)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view